scholarly journals Removal of Methylene Blue of Textile Industry Waste with Activated Carbon using Adsorption Method

REAKTOR ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 168-171
Author(s):  
Maryudi Maryudi ◽  
Shinta Amelia ◽  
Siti Salamah

The colorant that is often used in the textile industry is methylene blue which is a cationic heterocyclic aromatic compound. This compound is very stable and is difficult to decompose naturally leading to environment in large concentrations. Therefore, a waste treatment technology to reduce the concentration of dye waste in water becomes importannt. So far, adsorption method with activated carbon remains the most efficient and effective technique in removing dyes from liquid waste due to its relatively large adsorption capacity. Activated carbon is one of the non-metallic mineral commodities or multipurpose industrial minerals, one of which is as an adsorbent or adsorbent media. This study aims to determine the potential of activated carbon in adsorbing methylene blue with variations in the concentration of methylene blue and particle size of activated carbon. The procedures in this experiment include, the preparation of activated carbon with size variations (20-60, 60-100 and> 100 mesh) and variations in the concentration of methylene blue (15 ppm, 30 ppm and 45 ppm) with contact time (0 to 180 minutes). From the results of the study, it was found that the smaller the size of activated carbon used, the greater the adsorption capacity, ie at mesh size> 100 mesh, the adsorption capacity was 9.8%. Whereas, the smaller the concentration of methylene blue, the activated carbon could work optimally at a concentration of 15 ppm at 30 minutes with adsorption capacity as high as 100%.Keywords: adsorption; Methylene Blue; activated carbon; concentration; time; particle size

2019 ◽  
Vol 8 (2) ◽  
pp. 144-147
Author(s):  
Shinta Amelia ◽  
Maryudi Maryudi

Textile industry waste contains dyes that are difficult to decompose naturally and cause disruption of ecosystems in water. The colorant that is often used in the textile industry is methylene blue which is a cationic heterocyclic aromatic compound. This compound is so stable that it is difficult to decompose naturally and is harmful to the environment in large concentrations. Therefore, we need a waste treatment technology that can reduce the concentration of dye waste in water. So far, the adsorption method remains the most efficient and effective technique in removing dyes because of its relatively large adsorption capacity. One method that can be used is the adsorption method using natural zeolite. Zeolite is one of the non-metal mineral commodities or multipurpose industrial minerals, one of which is as an adsorbent or adsorbent media. This study aims to determine the potential of natural zeolite in absorbing methylene blue with variations in the concentration of methylene blue and various sizes of natural zeolite mesh. The procedures in this experiment include, the preparation of natural zeolite with size variations of 20-60 mesh, 60-100 mesh and> 100 mesh and variations in the concentration of methylene blue used 15 ppm, 30 ppm and 45 ppm with contact time from 0 to 180 minutes. From the results of the study it was found that the smaller the size of natural zeolite used, the greater the percentage of dye removal that is at mesh size> 100 mesh the percentage of dye removal was 32.11%. As for the variation of the concentration of methylene blue, the smaller the concentration, the natural zeolite can work optimally ie at a concentration of 15 ppm at 180 minutes the remaining methylene blue concentration of 0.145 ppm.


2021 ◽  
Vol 20 (1) ◽  
pp. 37-44
Author(s):  
Dhonny Suwazan ◽  
Nisa Nurhidayanti

ABSTRAKLogam berat merupakan salah satu bahan kimia berbahaya yang dapat menimbulkan bahaya bagi lingkungan dan makhluk hidup karena memiliki toksisitas yang tinggi dan tidak dapat terbiodegradasi sehingga menjadi bioakumulasi pada rantai makanan. Dalam limbah cair yang dihasilkan pada industri tekstil terdapat salah satu logam berat yaitu timbal (Pb) yang digunakan sebagai pengikat zat warna. Salah satu metode penghilangan logam berat pada limbah cair yaitu metode adsorpsi menggunakan biosorben. Biosorben yang digunakan pada penelitian ini adalah campuran antara kitosan dan karbon aktif dari ampas teh. Tujuan dari penelitian ini untuk menentukan efektivitas penurunan konsentrasi Pb menggunakan adsorben alami dengan kombinasi kitosan dan ampas teh. Tahap awal dilakukan pengujian kandungan logam berat pada PT PXI dan diperoleh kandungan awal logam Pb sebesar 1,02 mg/L. Kemudian dilakukan sintesis adsorben hasil kombinasi kitosan dan karbon aktif dari ampas teh. Hasil karakterisasi diperoleh kadar karbon terikat sebesar 78,09%. Karakterisasi dilanjutkan untuk mengetahui sifat fisika dan kimia biosorben dilakukan menggunakan FTIR dan SEM-EDS. Hasil karakterisasi menggunakan FTIR didapatkan gugus fungsi O-H yang berperan dalam proses adsorpsi, hasil SEM-EDS menunjukan peningkatan kualitas struktur pori dan komposisi unsur dari kitosan yang telah di sintesis dengan ampas teh. Biosorben kombinasi kitosan dan karbon aktif dari ampas teh diaplikasikan sebagai adsorben dalam penghilangan logam berat Pb pada limbah industri tekstil PT PXI dengan variasi massa adsorben. Analisa konsentrasi Pb dilakukan menggunakan AAS. Hasil penelitian menunjukkan bahwa dengan penambahan karbon aktif ampas teh sebesar 1,4 gr menghasilkan persen efektivitas tertinggi dalam penghilangan logam berat Pb sebesar 90,6% dan dapat menurunkan konsentrasi hingga 0.1 mg/L sehingga dapat memenuhi baku mutu yang dipersyaratkan.ABSTRACTHeavy metal is one of the hazardous chemicals that can pose a danger to the environment and living things because it has high toxicity and cannot be biodegraded so that it becomes bioaccumulation in the food chain. In the liquid waste produced in the textile industry there is one heavy metal, namely lead (Pb) which is used as a dye binder. One method of removing heavy metals in liquid waste is the adsorption method using a biosorbent. The biosorbent used in this research is a mixture of chitosan and activated carbon from tea dregs. The purpose of this study was to determine the effectiveness of reducing Pb concentration using a natural adsorbent with a combination of chitosan and tea dregs. The initial stage was testing the heavy metal content of PT PXI, the initial Pb content was 1.02 mg/L. Then the synthesis of the adsorbent resulting from the combination of chitosan and activated carbon from tea dregs was carried out. The results of the characterization obtained bound carbon content of 78.09%. Characterization was continued to determine the physical and chemical properties of biosorbents using FTIR and SEM-EDS. The results of characterization using FTIR obtained O-H functional groups that play a role in the adsorption process, the SEM-EDS results showed an increase in the quality of the pore structure and elemental composition of chitosan that had been synthesized with tea dregs. Biosorbent combination of chitosan and activated carbon from tea dregs was applied as an adsorbent in the removal of heavy metal Pb in textile industry waste PT PXI with variations in adsorbent mass. Pb concentration analysis was carried out using AAS. The results showed that the addition of 1.4 g of tea dregs activated carbon produced the highest percentage of effectiveness in the removal of heavy metal Pb by 90.6% and could reduce the concentration to 0.1 mg/L so that it could meet the required quality standards. 


2018 ◽  
Vol 18 (4) ◽  
pp. 600
Author(s):  
Eva Fathul Karamah ◽  
Ika Putri Adripratiwi ◽  
Linggar Anindita

Tofu industry wastewater is one of the environmental pollutants that need more effective treatment. Ozonation and adsorption method is known to have the capability to oxidize organic compound in wastewater. Adsorption is done by using granular activated carbon (GAC) as an adsorbent to increase tofu wastewater degradation process by adsorbing organic materials and increasing production of hydroxyl radical as the main oxidizing agent. This research is carried out to evaluate the performance of ozonation, adsorption, and combination of both in processing tofu wastewater. To evaluate the significance of ozone dosage and amount of GAC used, these variations are varied which are 60, 111, and 155 mg/h of ozone dosage and 50, 75, and 100 g of the amount of GAC used. Parameters of the process are organic substances of tofu wastewater such as COD, TSS, and pH. The measurements are being done using a spectrophotometer, colorimeter, and pH meter. The outcome of this research is to provide an alternative method in the liquid waste treatment of the tofu industry and the processed wastewater to meet the environmental quality standards. The more ozone and the more quantity of GAC used, the higher the quantity of hydroxyl radicals formed. Addition of GAC in the ozonation process results in more than 100% increase in hydroxyl radical production. Combination of ozonation and adsorption is able to remove 377.12 mg/L of COD and 26 mg/L of TSS.


2021 ◽  
Vol 12 (1) ◽  
pp. 36-43
Author(s):  
Naning Citra Lestari ◽  
Ilham Budiawan ◽  
Ahmad Muhammad Fuadi

The textile industry in Indonesia has increased since the 1980s. From the non-oil and gas sector, the textile industry is the government's largest source of income. In addition to its impressive growth, about 10-15% of the used textile dyestuff is wasted at the dyeing process can exceed the maximum Chemical Oxygen Demand level of 150 mg/L. Synthetic dyes contain carcinogenic ingredients that can harm the environment and aquatic biota. The alternative for handling the dye waste is the adsorption method using bio adsorbent from a mixture of chicken eggshells and rice husk ash. Both have the potential to be used as adsorbents because they have an active site, abundant amounts, and are economical. This study was to determine the effect of the process variables of the adsorbent mass ratio, contact time, and pH on the adsorption capacity of methylene blue using a mixture of eggshells and rice husk ash with the UV-Vis Spectrophotometer analysis method. The results showed that the optimal conditions for the adsorption of 20 ppm methylene blue were 0.2:0.8 gram of adsorbent ratio, 80 minutes, and pH of 3. The adsorption capacity obtained was 98.817%, reduced the methylene blue concentration to 0.237 ppm. 


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


2020 ◽  
Vol 21 (1) ◽  
pp. 125-130
Author(s):  
Nyoman Sumawijaya ◽  
Asep Mulyono ◽  
Anna Fadliah Rusydi

ABSTRACTThe leather tanning industry in Sukaregang, Garut Regency, produces liquid waste containing Chromium and is discharged directly into the Ciwalen River without a waste treatment process. The content of Cr6+ as metal ions in the waste can also contaminating groundwater. The movement of Cr6+ will pass through the soil media before entering to the groundwater wells. The capability of the soil to adsorb the contaminant will reduce the impact on groundwater. The purpose of this study was to determine the ability of the soil in adsorbing and inhibiting the movement of Cr6+ into groundwater. The study was carried out at Sukaregang, Garut Regency and conducting adsorption experiments with a batch system. The analysis was carried out using the Langmuir and Freundlich isotherm model. The experimental results showed that Cr6+ adsorbed ranged from 38% to 57% of the initial concentration. The results from Langmuir Isotherm were: the distribution coefficient (Kads) was 0.45 L/mg and the maximum adsorption capacity (qm) was 2.44 mg/100g sorbent with R2 = 0.959 and Freundlich Isotherm was: qm was 2,86 mg/100g sorbent and Kads was 0,35 L/mg with R2 = 0,860. This large adsorption capacity is caused by soil texture and soil organic content. The soil in Sukaregang tanning industries has a high adsorption capacity towards Cr6+ contaminants.Keywords: adsorption, chromium, Cr6+, contaminant, volcanic soil, GarutABSTRAKIndustri penyamakan kulit di wilayah Sukaregang, Kabupaten Garut, menghasilkan limbah cair yang mengandung Kromium dan dibuang ke Sungai Ciwalen tanpa proses pengolahan limbah. Kandungan ion logam Cr6+ pada limbah dapat mencemari air tanah. Pergerakan ion logam Cr6+ akan melalui media tanah sebelum memasuki sumur-sumur penduduk. Beberapa jenis tanah mempunyai kemampuan untuk mengadsorpsi ion pencemar sehingga tidak semua limbah yang meresap ke dalam tanah mencemari air tanah. Tujuan dari penelitian ini adalah untuk mengetahui peranan tanah dalam menghambat pergerakan ion logam Cr6+ ke dalam air tanah. Penelitian dilaksanakan dengan pengambilan sampel tanah di daerah Sukaregang, Garut, dan melakukan percobaan adsorpsi dengan sistem batch. Sementara analisis dilakukan dengan menggunakan model isotherm Langmuir dan Freundlich. Hasil percobaan menunjukkan konsentrasi Cr6+ yang teradsorpsi berkisar 38 – 57 % dari konsentrasi awal. Kads sebesar 0,45 L/mg dan qm sebesar 2,44 mg/100g tanah dengan nilai R2 = 0,959 menggunakan isoterm Langmuir dan isoterm Freundlich memberikan nilai qm sebesar 2,86 mg/100 g sorbent dan Kads sebesar 0,35 L/mg dengan R2 = 0,860. Tingginya daya adsorpsi ini disebabkan oleh tekstur tanah dan kandungan bahan organik. Tanah di wilayah penelitian memiliki daya adsorpsi yang besar terhadap kontaminan Cr6+.Kata kunci: adsorpsi, kromium, Cr6+, kontaminan, tanah vulkanik, Garut


2019 ◽  
Vol 7 (2) ◽  
pp. 164-168
Author(s):  
Shinta Amelia ◽  
Wahyudi Budi Sediawan ◽  
Zahrul Mufrodi ◽  
Teguh Ariyanto

Methylene blue is one of the dyes in textile industries which has a negative impact on the environment. This compound is very stable, so it is difficult to degrade naturally. Methylene blue can be harmful to the environment if it is in a very large concentration, because it can increase the value of Chemical Oxygen Demand (COD) which can damage the balance of environment ecosystem. Adsorption method by using activated carbon as the adsorbent is one of the most efficient and effective techniques in dye removal due to its large adsorption capacity. However, the adsorption method using activated carbon only removes the pollutant compounds to other media or phases. Other method that can be used includes Advanced Oxidation Processes (AOPs). This method has the advantage of being able to degrade harmful compounds in the waste through oxidation (oxidative degradation) processes. One method of AOPs is the process by using Fenton reagents. This study was aimed to prepare and characterize iron oxide/porous activated carbon catalyst. The type of porous activated carbon used was carbon from biomass derived carbon with microporous character. This biomass carbon is obtained from renewable natural products, namely coconut shell.The kinetics and adsorption models in the material will be derived and evaluated from the research data. Based on the research, it can be concluded that catalytic degradation is very effective for degradation of dye wastewater. Methylene blue degradation increases with the use of Fe2O3/activated carbon catalyst and the addition of hydrogen peroxide as the Fenton reagent. In addition, the pore structure difference in the catalyst also had a significant effect on the methylene blue degradation reaction resulting in increased capacity of methylene blue degradation reactions.


2020 ◽  
Vol 841 ◽  
pp. 273-277
Author(s):  
Ariany Zulkania ◽  
Muhammad Iqbal ◽  
Syamsumarlin

In this study, two types of adsorbent including activated carbon and bio-sorbent were produced from Palm fiber wastes (PFW), which were activated by phosphoric acid. The influence of adsorbent type and phosphoric acid concentration on methylene blue adsorption was investigated. The most optimum adsorbent was determined based on adsorption capacity and removal percentage of each adsorbent. The result shows that 9.984 mg/g of adsorption capacity and 99.84% of removal percentage were achieved in 90 minutes’ adsorption, which demonstrates the huge potential of bio-sorbent and was chosen to be the most optimum adsorbent based on methylene blue removal. The characterization of bio-sorbent was then investigated using FTIR and SEM. FTIR result shows that bio-sorbent contains cellulose which affected the adsorption process while SEM result shows the cleaner pores and surface compared to bio-sorbent before activation.


Author(s):  
Trần Quang Ngọc ◽  
Hoang Thi Trang Nguyen ◽  
Vo Nhat Thang

Chitosan obtained from shrimp shells and SiO2 nanoparticles obtained from rice husk ash were used to synthesize chitosan - SiO2 composite materials. In order to obtain a porous chitosan adsorbent, the SiO2 particles in the chitosan - SiO2 composite material were removed with NaOH solution. With the orientation of applying adsorbent in wastewater treatment of textile industry, the ability of methylene blue adsorption of chitosan with porous structure has been investigated. Survey results show that chitosan has porous structure with good adsorption capacity of methylene blue. The adsorption capacity of materials depends on many factors such as: structure of particles; pH of adsorption medium and temperature. Adsorbent material is made of composite chitosan - SiO2 with the ratio of chitosan/SiO2 equal to 1/1 (w/w) with the best adsorption capacity. Materials with good adsorption capacity at pH = 6, at low pH, the adsorption capacity of the material is significantly reduced. Temperature has a great influence on the adsorption capacity of the material. The suitable temperature for adsorption of materials is 40 oC. With a higher temperature, the desorption process will be accelerated. This makes the adsorption capacity of the material decrease. The maximum methylene blue adsorption capacity of the material is determined about 7.25 mg/g after 40 minutes of adsorption time.


2021 ◽  
Vol 1 (1) ◽  
pp. 30-36
Author(s):  
Khoirun Nisa Mahmud ◽  
Tan Hui Wen ◽  
Zainul Akmar Zakaria

Dye pollution in water system is of concern due to its carcinogenicity and its effect on aesthetic feature. One pollutant of interest is methylene blue (MB), which is a cationic dye widely used in industries. In this study, pyrolysis process was used to convert pineapple waste biomass (PWB) into useful adsorbents such as biochar (BC) and activated carbon (AC) to remove MB in water. BC was produced from pyrolysis of PWB (340 °C, 3 hours) whereas AC was prepared from pyrolysis of PWB (500 °C, 1 hour) impregnated with zinc chloride (ZnCl2). Prior to use, AC-PWB and BC-PWB were characterized for surface area, functional groups and surface morphology. Removal of MB was investigated by varying different parameters i.e. initial MB concentration and contact time, adsorbent dosage and temperature. Results obtained showed that AC-PWB has higher adsorption capacity than BC-PWB. The adsorption capacity and adsorption rate increased with increasing initial concentration of MB, adsorbent dosage and temperature until reached equilibrium condition. As a conclusion, PWB can be used as a useful raw material to produce cheap and environmentally friendly adsorbent to remove dye from solution.


Sign in / Sign up

Export Citation Format

Share Document