scholarly journals Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

2013 ◽  
Vol 12 (6) ◽  
pp. 280-287 ◽  
Author(s):  
Eun Hee Lee ◽  
Kyung Mo Kim ◽  
Hong Pyo Kim
Author(s):  
John M. Pietralik ◽  
Kevin L. Heppner

Steam generator (SG) components are subjected to corrosive solutions in turbulent flow. Under such conditions, actual component lifetimes may be significantly reduced from their original design lifetimes. Premature replacement of steam generator components before their expected lifetime can be very expensive. Furthermore, degradation of essential components can reduce the steam generator efficiency, thus reducing net profits. Moreover, a SG failure can also be a safety issue. One of the degradation mechanisms affecting secondary-side SG internal structural elements, which are referred to as internals, is Flow-Accelerated Corrosion (FAC). The susceptibility to FAC depends on flow parameters, water chemistry, and materials. All SG internals made of carbon steel are susceptible to FAC to varying degrees. For FAC susceptibility prediction, flow velocity, pH, and oxygen distributions are needed. SG codes, including THIRST (Thermal Hydraulic analysis In STeam generators, a computer code developed by AECL), traditionally solve for thermalhydraulic parameters. A new chemistry module has been added to THIRST, which now makes this code useful for the prediction of local water chemistry parameters in the SG. The THIRST chemistry module is comprised of a multicomponent, multiphase mass transport model coupled with a multiphase chemical equilibrium model. As input, the module requires amine concentrations in the feedwater and reheater drains. The module predicts local distributions of amine concentration in the secondary side. The concentrations predicted by the module are used to compute the pH. The chemistry module was verified against results of other work in the literature and against station blowdown data. Flow and chemistry predictions of THIRST were used to predict FAC susceptibility for internals of a SG with an integral preheater and a SG without it. Ranking of SG locations in order of FAC susceptibility was estimated from an empirical, Kastner-Riedle model. The most susceptible internals are predicted to be those in the upper section of the hot side and those on the cold side that are near the SG centre, while SG lower regions, including the integral preheater, if one exists, are better protected.


Author(s):  
John M. Pietralik ◽  
Chris S. Schefski

The three groups of parameters that affect flow-accelerated corrosion (FAC) are the flow conditions, water chemistry, and materials. Nuclear power plant (NPP) data and laboratory tests confirm that, under alkaline water chemistry, there is a close relationship between local flow conditions and FAC rates in the piping components. The knowledge of the local flow effects can be useful for developing targeted inspection plans for piping components and predicting the location of the highest FAC rate for a given piping component. A similar evaluation applies also to the FAC in heat transfer equipments such as heat exchangers and steam generators. The objective of this paper is to examine the role of the flow and mass transfer in bends under alkaline FAC conditions. Bends experience increased FAC rates compared with straight pipes, and are the most common components in piping systems. This study presents numerical simulations of the mass transfer of ferrous ions and experimental results of the FAC rate in bends. It also shows correlations for mass transfer coefficients in bends and reviews the most important flow parameters affecting the mass transfer coefficient. The role of bend geometry and, in particular, the short and long radii, surface roughness, wall shear stress, and local turbulence, is discussed. Computational fluid dynamics calculations and plant artifact measurements for short- and long-radius bends are presented. The effect of the close proximity of the two bends on the FAC rate is also examined based on CANDU (CANDU is a registered trademark of the Atomic Energy of Canada Limited) NPP inspection data and compared with literature data.


2021 ◽  
Vol 122 ◽  
pp. 105127
Author(s):  
P. Madasamy ◽  
M. Mukunthan ◽  
P. Chandramohan ◽  
T.V. Krishna Mohan ◽  
Andrews Sylvanus ◽  
...  

Author(s):  
Dong-Jin Kim ◽  
Sung-Woo Kim ◽  
Jong Yeon Lee ◽  
Kyung Mo Kim ◽  
Se Beom Oh ◽  
...  

2018 ◽  
Vol 65 ◽  
pp. 223-235 ◽  
Author(s):  
Mohamed Bayati ◽  
Jingjing Dai ◽  
Austin Zambrana ◽  
Chloe Rees ◽  
Maria Fidalgo de Cortalezzi

Author(s):  
Ali Keshavarz ◽  
Andrew K. Ali ◽  
Randy K. Lall

Flow-accelerated corrosion (FAC) is a phenomenon that results in metal loss from piping, vessels and equipment made of carbon steel. This metal loss can lead to stress to occur at the steam inlet nozzle side, where it is located at the side of the deaerator. This paper presents a method to find the thickness critical of the steam inlet nozzle. A Finite Element (FE) model of the pressure vessel head was created to perform a stress analysis using NX Nastran 5.0. By applying materials properties, loads and constraints to the model, the results obtained are required to satisfy the following criterion: vonMises≥SySy=YieldStrength The results obtained from the stress analysis were analyzed to obtain a corrosion allowance and it was compared to the recommended value from a normal deaerator design, which is roughly 0.25 inches. From the FE model, and by continuously reducing the thickness of the nozzle, it was determined that the corrosion allowance is 0.229 inches, and that the percentage error was 8.4%.


Sign in / Sign up

Export Citation Format

Share Document