scholarly journals Effect of tidal volume and positive end-expiratory pressure on expiratory time constants in experimental lung injury

2016 ◽  
Vol 4 (5) ◽  
pp. e12737 ◽  
Author(s):  
William R. Henderson ◽  
Paolo B. Dominelli ◽  
Yannick Molgat-Seon ◽  
Rachel Lipson ◽  
Donald E. G. Griesdale ◽  
...  
2014 ◽  
Vol 120 (3) ◽  
pp. 694-702 ◽  
Author(s):  
José L. Izquierdo-García ◽  
Shama Naz ◽  
Nicolás Nin ◽  
Yeny Rojas ◽  
Marcela Erazo ◽  
...  

Abstract Background: Global metabolic profiling using quantitative nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) is useful for biomarker discovery. The objective of this study was to discover biomarkers of acute lung injury induced by mechanical ventilation (ventilator-induced lung injury [VILI]), by using MRS and MS. Methods: Male Sprague–Dawley rats were subjected to two ventilatory strategies for 2.5 h: tidal volume 9 ml/kg, positive end-expiratory pressure 5 cm H2O (control, n = 14); and tidal volume 25 ml/kg and positive end-expiratory pressure 0 cm H2O (VILI, n = 10). Lung tissue, bronchoalveolar lavage fluid, and serum spectra were obtained by high-resolution magic angle spinning and 1H-MRS. Serum spectra were acquired by high-performance liquid chromatography coupled to quadupole-time of flight MS. Principal component and partial least squares analyses were performed. Results: Metabolic profiling discriminated characteristics between control and VILI animals. As compared with the controls, animals with VILI showed by MRS higher concentrations of lactate and lower concentration of glucose and glycine in lung tissue, accompanied by increased levels of glucose, lactate, acetate, 3-hydroxybutyrate, and creatine in bronchoalveolar lavage fluid. In serum, increased levels of phosphatidylcholine, oleamide, sphinganine, hexadecenal and lysine, and decreased levels of lyso-phosphatidylcholine and sphingosine were identified by MS. Conclusions: This pilot study suggests that VILI is characterized by a particular metabolic profile that can be identified by MRS and MS. The metabolic profile, though preliminary and pending confirmation in larger data sets, suggests alterations in energy and membrane lipids. SUPPLEMENTAL DIGITAL CONTENT IS AVAILABLE IN THE TEXT


2008 ◽  
Vol 108 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Rosanna Vaschetto ◽  
Jan W. Kuiper ◽  
Shyh Ren Chiang ◽  
Jack J. Haitsma ◽  
Jonathan W. Juco ◽  
...  

Background Mechanical ventilation can induce organ injury associated with overwhelming inflammatory responses. Excessive activation of poly(adenosine diphosphate-ribose) polymerase enzyme after massive DNA damage may aggravate inflammatory responses. Therefore, the authors hypothesized that the pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase by PJ-34 would attenuate ventilator-induced lung injury. Methods Anesthetized rats were subjected to intratracheal instillation of lipopolysaccharide at a dose of 6 mg/kg. The animals were then randomly assigned to receive mechanical ventilation at either low tidal volume (6 ml/kg) with 5 cm H2O positive end-expiratory pressure or high tidal volume (15 ml/kg) with zero positive end-expiratory pressure, in the presence and absence of intravenous administration of PJ-34. Results The high-tidal-volume ventilation resulted in an increase in poly(adenosine diphosphate-ribose) polymerase activity in the lung. The treatment with PJ-34 maintained a greater oxygenation and a lower airway plateau pressure than the vehicle control group. This was associated with a decreased level of interleukin 6, active plasminogen activator inhibitor 1 in the lung, attenuated leukocyte lung transmigration, and reduced pulmonary edema and apoptosis. The administration of PJ-34 also decreased the systemic levels of tumor necrosis factor alpha and interleukin 6, and attenuated the degree of apoptosis in the kidney. Conclusion The pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase reduces ventilator-induced lung injury and protects kidney function.


1999 ◽  
Vol 27 (9) ◽  
pp. 1940-1945 ◽  
Author(s):  
Peter C. Rimensberger ◽  
Gorsev Pristine ◽  
J. Brendan M. Mullen ◽  
Peter N. Cox ◽  
Arthur S. Slutsky

2019 ◽  
Vol 130 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Francesca Collino ◽  
Francesca Rapetti ◽  
Francesco Vasques ◽  
Giorgia Maiolo ◽  
Tommaso Tonetti ◽  
...  

Abstract EDITOR’S PERSPECTIVE What We Already Know about This Topic Positive end-expiratory pressure protects against ventilation-induced lung injury by improving homogeneity of ventilation, but positive end-expiratory pressure contributes to the mechanical power required to ventilate the lung What This Article Tells Us That Is New This in vivo study (36 pigs mechanically ventilated in the prone position) suggests that low levels of positive end-expiratory pressure reduce injury associated with atelectasis, and above a threshold level of power, positive end-expiratory pressure causes lung injury and adverse hemodynamics Background Positive end-expiratory pressure is usually considered protective against ventilation-induced lung injury by reducing atelectrauma and improving lung homogeneity. However, positive end-expiratory pressure, together with tidal volume, gas flow, and respiratory rate, contributes to the mechanical power required to ventilate the lung. This study aimed at investigating the effects of increasing mechanical power by selectively modifying its positive end-expiratory pressure component. Methods Thirty-six healthy piglets (23.3 ± 2.3 kg) were ventilated prone for 50 h at 30 breaths/min and with a tidal volume equal to functional residual capacity. Positive end-expiratory pressure levels (0, 4, 7, 11, 14, and 18 cm H2O) were applied to six groups of six animals. Respiratory, gas exchange, and hemodynamic variables were recorded every 6 h. Lung weight and wet-to-dry ratio were measured, and histologic samples were collected. Results Lung mechanical power was similar at 0 (8.8 ± 3.8 J/min), 4 (8.9 ± 4.4 J/min), and 7 (9.6 ± 4.3 J/min) cm H2O positive end-expiratory pressure, and it linearly increased thereafter from 15.5 ± 3.6 J/min (positive end-expiratory pressure, 11 cm H2O) to 18.7 ± 6 J/min (positive end-expiratory pressure, 14 cm H2O) and 22 ± 6.1 J/min (positive end-expiratory pressure, 18 cm H2O). Lung elastances, vascular congestion, atelectasis, inflammation, and septal rupture decreased from zero end-expiratory pressure to 4 to 7 cm H2O (P < 0.0001) and increased progressively at higher positive end-expiratory pressure. At these higher positive end-expiratory pressure levels, striking hemodynamic impairment and death manifested (mortality 0% at positive end-expiratory pressure 0 to 11 cm H2O, 33% at 14 cm H2O, and 50% at 18 cm H2O positive end-expiratory pressure). From zero end-expiratory pressure to 18 cm H2O, mean pulmonary arterial pressure (from 19.7 ± 5.3 to 32.2 ± 9.2 mmHg), fluid administration (from 537 ± 403 to 2043 ± 930 ml), and noradrenaline infusion (0.04 ± 0.09 to 0.34 ± 0.31 μg · kg−1 · min−1) progressively increased (P < 0.0001). Lung weight and lung wet-to-dry ratios were not significantly different across the groups. The lung mechanical power level that best discriminated between more versus less severe damage was 13 ± 1 J/min. Conclusions Less than 7 cm H2O positive end-expiratory pressure reduced atelectrauma encountered at zero end-expiratory pressure. Above a defined power threshold, sustained positive end-expiratory pressure contributed to potentially lethal lung damage and hemodynamic impairment.


2015 ◽  
Vol 100 (10) ◽  
pp. 1217-1228 ◽  
Author(s):  
William R. Henderson ◽  
Yannick Molgat-Seon ◽  
Paolo B. Dominelli ◽  
Penelope M. A. Brasher ◽  
Donald E. G. Griesdale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document