Parametric optimisation of gas metal arc dissimilar welding on AISI 304 stainless steel and low carbon steel

Author(s):  
T.E. Abioye ◽  
C.O. Kanu ◽  
T.I. Ogedengbe ◽  
D.I. Adebiyi
2018 ◽  
Vol 15 (5) ◽  
pp. 584-591 ◽  
Author(s):  
Tunde Isaac Ogedengbe ◽  
Taiwo Ebenezer Abioye ◽  
Augusta Ijeoma Ekpemogu

Purpose The purpose of this study is to conduct gas tungsten arc dissimilar welding of AISI 304 stainless steel and low carbon steel within a process window so as to investigate the effects of current, speed and gas flow rate (GFR) on the microstructure and mechanical properties of the weldments. Design/methodology/approach The welding experiment was carried out at different combinations of parameters using WN-250S Kaierda electric welding machine. A combination of scanning electron microscopy and energy dispersive X-ray spectroscopy was used to examine the microstructure of the weldments. Micro-hardness and tensile tests were performed using Vickers hardness tester and Instron universal testing machine, respectively. ANOVA was used to analyze the significance of the parameters on the mechanical properties. Findings The microstructure of the weld region is characterized with dendritic structure with the existence of ferrite and austenite phases. The utilized parameters show significant effects on the ultimate tensile strength (UTS) of the weldments. The current and GFR were found to be the most and least significant factors, respectively. Both the grain size and weld penetration contributed to the UTS of the weldments. The UTS (427-886 MPa) increased with decreasing current and welding speed. In all samples, the weld region exhibited higher hardness (297-396 HV) than the HAZ in the base metals (maximum of 223 Â ± 6 HV). All the three factors show significant effect with the welding speed contributing mostly to the hardness of the weld region. Originality/value The parametric combination that gives the optimum mechanical performance of the dissimilar gas tungsten arc weldments of AISI 304 stainless steel and low carbon steel was established.


2007 ◽  
Vol 567-568 ◽  
pp. 329-332 ◽  
Author(s):  
Kyohei Kawamoto ◽  
Yasuji Oda ◽  
Hiroshi Noguchi

In order to investigate the hydrogen effect on fatigue crack growth (FCG) behavior in a few kinds of practical alloys; austenitic stainless steels (solution-treated metastable type 304 and stable type 316L), an aluminum alloy (age-hardened 6061) and a low carbon steel (annealed 0.13%C-Fe), FCG tests were carried out in hydrogen gas and in nitrogen gas. The FCG rates of these materials are enhanced by hydrogen, though the acceleration degrees are different. A crack grows across grains by slip-off in 316L stainless steel and in age-hardened 6061 aluminum alloys even in hydrogen. Faceted area increases in 304 stainless steel and in low carbon steel in hydrogen. In 304 stainless steel, the ratio of facets to the entire fracture surface was not so large. Thus, the FCG rate is not significantly affected through the facets in 304 stainless steel. In low carbon steel, facets were increased considerably, though a crack grows step by step or after a large number of loading cycles even along grain boundaries. Anyhow hydrogen enhances the FCG rate of these materials through the influence on slip behavior. Based on above-mentioned results, the effect of loading frequency on FCG rate in hydrogen of the age-hardened 6061 aluminum alloy was also investigated. The FCG rate increases as the testing frequency decreases, though the FCG rate in hydrogen shows the tendency to saturate.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Younis K. Khdir ◽  
Salim A. Kako ◽  
Ramadhan H. Gardi

The aim of this study is to investigate the influence of different heat inputs on mechanical properties and microstructure of dissimilar electrical arc welded austenitic stainless steel AISI 304 and low-carbon steel (CS) joints. The mechanical properties of welded austenitic stainless steel type AISI 304 and low-CS are studied. Five different heat inputs 0.5, 0.9, 1.41, 2, and 2.5 KJ/min were applied to investigate the microstructure of the welded zone and mechanical properties. The results showed that the efficiency of the joints and tensile strength increased with increasing heat inputs, while excess heat input reduces the efficiency. Furthermore, changes in microstructure with excess heat input cause failure at the heat-affected zone.


Sign in / Sign up

Export Citation Format

Share Document