Numerical simulation approach on stress and strain for chip scale package under thermal cycling

Author(s):  
Yang Ping ◽  
Wei Li
2012 ◽  
Vol 569 ◽  
pp. 395-399
Author(s):  
Jing Zhao ◽  
Guo Yu Wang ◽  
Yan Zhao ◽  
Yue Ju Liu

A numerical simulation approach of ventilated cavity considering the compressibility of gases is established in this paper, introducing the gas state equation into the calculation of ventilated supercavitating flow. Based on the comparison of computing results and experimental data, we analyzes the differences between ventilated cavitating flow fields with and without considered the compressibility of gases. The effect of ventilation on the ventilated supercavitating flow field structure is discussed considering the compressibility of gases. The results show that the simulation data of cavity form and resistance, which takes the compressibility of gases into account, accord well with the experimental ones. With the raising of ventilation temperature, the gas fraction in the front cavity and the gas velocity in the cavity increase, and the cavity becomes flat. The resistance becomes lower at high ventilation temperature, but its fluctuation range becomes larger than that at low temperature.


2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


Author(s):  
Chang Ye ◽  
Gary J. Cheng

In this paper, numerical simulation of nanoparticle integrated laser shock peening of aluminum alloys was carried out. A “tied constraint” was used to connect the matrix and nanoparticle assembly in ABAQUS package. Different particle size and particle volumes fraction (PVF) were studied. It was found that there is significant stress concentration around the nanoparticles. The existence of nanoparticle will influence the stress wave propagation and thus the final stress and strain state of the material after LSP. In addition, particle size, PVF and particle orientation all influence the strain rate, static residual stress, static plastic strain and energy absorption during the LSP process.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


Sign in / Sign up

Export Citation Format

Share Document