Microgravity, atmosphere sounding, astronomy, technology validation - an overview of suborbital rockets' missions and payloads

Author(s):  
Rachita Puri ◽  
Tomasz Noga
Keyword(s):  
2021 ◽  
Vol 9 (1) ◽  
pp. 13-29
Author(s):  
Brandon Califar ◽  
Agata Zupanska ◽  
Jordan A. Callaham ◽  
Matthew T. Bamsey ◽  
Thomas Graham ◽  
...  

Abstract The increasing availability of flights on suborbital rockets creates new avenues for the study of spaceflight effects on biological systems, particularly of the transitions between hypergravity and microgravity. This paper presents an initial comparison of the responses of Arabidopsis thaliana to suborbital and atmospheric parabolic flights as an important step toward characterizing these emerging suborbital platforms and their effects on biology. Transcriptomic profiling of the response of the Arabidopsis ecotype Wassilewskija (WS) to the aggregate suborbital spaceflight experiences in Blue Origin New Shepard and Virgin Galactic SpaceShipTwo revealed that the transcriptomic load induced by flight differed between the two flights, yet was biologically related to traditional parabolic flight responses. The sku5 skewing mutant and 14-3-3κ:GFP regulatory protein overexpression lines, flown in the Blue Origin and parabolic flights, respectively, each showed altered intra-platform responses compared to WS. An additional parabolic flight using the F-104 Starfighter showed that the response of 14-3-3κ:GFP to flight was modulated in a similar manner to the WS line. Despite the differing genotypes, experimental workflows, flight profiles, and platforms, differential gene expression linked to remodeling of central metabolic processes was commonly observed in the flight responses. However, the timing and directionality of differentially expressed genes involved in the conserved processes differed among the platforms. The processes included carbon and nitrogen metabolism, branched-chain amino acid degradation, and hypoxic responses. The data presented herein highlight the potential for various suborbital platforms to contribute insights into biological responses to spaceflight, and further suggest that in-flight fixation during suborbital experiments will enhance insights into responses during each phase of flight.


Author(s):  
John M. Carson ◽  
Carl Seubert ◽  
Farzin Amzajerdian ◽  
Chuck Bergh ◽  
Ara Kourchians ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 65-79
Author(s):  
Tomasz Noga

This paper presents benefits from using suborbital rockets in safety & defense applications. The paper describes suborbital rockets and their contribution to modern science, research and technology development. A historical view of suborbital rockets and their applications in safety & defense roles is discussed. Chosen research & development activities, military exercises and air defense systems’ tests performed using suborbital rockets in various countries are listed and described based on a literature review of publicly available sources. The paper presents capabilities of Łukasiewicz Research Network – Institute of Aviation in the field of suborbital rockets. A development of ILR-33 AMBER 2K rocket reaching flight speeds over Mach 4 and optimized to reach 100 km altitude is described with comment regarding its applicability in safety & defense applications supported by flight simulations.


2019 ◽  
Vol 123 (1263) ◽  
pp. 600-616
Author(s):  
P. Janhunen ◽  
P. Toivanen ◽  
K. Ruosteenoja

ABSTRACTLaunching orbital and suborbital rockets from a high altitude is beneficial because of e.g. nozzle optimisation and reduced drag. Aircraft and gas balloons have been used for the purpose. Here we present a concept where a balloon is filled with pure water vapour on ground so that it rises to the launch altitude. The system resembles a gas balloon because no onboard energy source is carried, and no hard objects fall down. We simulate the ascent behaviour of the balloon. In the baseline simulation, we consider a 10 tonne rocket lifted to an altitude of 18 km.We model the trajectory of the balloon by taking into account steam adiabatic cooling, surface cooling, water condensation and balloon aerodynamic drag. The required steam mass proves to be only 1.4 times the mass of the rocket stage, and the ascent time is around 10 minutes. For small payloads, surface cooling increases the relative amount of steam needed, unless insulation is applied to the balloon skin. The ground-filled steam balloon seems to be an attractive and sustainable method of lifting payloads such as rockets into high altitude.


Sign in / Sign up

Export Citation Format

Share Document