scholarly journals The Influence of Methyl Jasmonate and Salicylic Acid on Secondary Metabolite Production in Rehmannia Glutinosa Libosch. Hairy Root Culture

2016 ◽  
Vol 58 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Ewelina Piątczak ◽  
Łukasz Kuźma ◽  
Halina Wysokińska

Abstract Rehmannia glutinosa hairy roots were used to evaluate the effect of methyl jasmonate (MeJa) and salicylic acid (SA) on increase of root biomass and production of iridoids (catalpol, harpagide) and phenylethanoids (verbascoside and isoverbascoside). The elicitors were added to 23-day-old culture separately at concentrations between 50 and 200 μM or in combinations at concentrations of 50 and 100 μM. Roots were harvested 72 h and 120 h after elicitation. The type of elicitor, its concentration and exposure time were found to strongly affect the content of each analyzed compound. A 72-hour treatment with 200 μM MeJa was the most effective in increase of verbascoside content (60.07 mg·DW−1 equivalent to 845.45 mg·L−1) and isoverbascoside (1.77 mg·DW−1 equivalent to 24.94 mg·L−1): these respective amounts were roughly 10- and 6.4-fold higher than the control values (unelicited roots). Exposure to 150 μM MeJa provided optimal harpagide content after 72 hours (0.136 mg·DW−1; 7.5-fold increase compared to the control), and catalpol content after 120 hours (up to 2.145 mg·DW−1). The combination of MeJa and SA also resulted in higher levels of secondary metabolites compared to the control culture, although these levels were lower than those observed for MeJa alone at the optimal concentration and exposure time. SA alone was less efficient in enhancing metabolite production than MeJa.

2021 ◽  
Vol 22 (11) ◽  
pp. 5671
Author(s):  
Mohsen Hesami ◽  
Austin Baiton ◽  
Milad Alizadeh ◽  
Marco Pepe ◽  
Davoud Torkamaneh ◽  
...  

For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.


Biologia ◽  
2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Elnaz Nourozi ◽  
Bahman Hosseini ◽  
Abbas Hassani

AbstractHairy root culture system is a valuable tool to study the characteristics of gene expression, gene function, root biology, biochemical properties and biosynthesis pathways of secondary metabolites. In the present study, hairy roots were established in Anise hyssop (Agastache foeniculum) via Agrobacterium rhizogenes. Three strains of Agrobacterium rhizogenes (A4, A7 and 9435), were used for induction of hairy roots in four various explants (hypocotyl, cotyledon, one-month-old leaf and five-month-old leaf) of Anise hyssop. The highest frequency of transformation was achieved using A4 strain in one-month-old leaves (51.1%). The transgenic states of hairy root lines were confirmed by PCR (Polymerase chain reaction) method. High performance liquid chromatography analysis revealed that the production of rosmarinic acid (RA) in transformed roots of A. foeniculum was almost 4-fold higher than that of the non-transformed roots. In a separate experiment, hairy roots obtained from one-month-old leaves inoculated with A4 strain, were grown in liquid medium and the effects of different concentrations of salicylic acid (0.0, 0.01, 0.1 and 1 mM) and chitosan (0, 50, 100 and 150 mg L−1) (as elicitor) and sucrose (20, 30, 40 and 50 g L−1) on the growth of hairy roots were evaluated. The results showed that, 30 g L−1 sucrose and 100 mg L−1 chitosan increased the biomass of hairy root cultures and application of salicylic acid reduced the growth of hairy roots compared with control roots.


2016 ◽  
Vol 16 (5) ◽  
pp. 432-442 ◽  
Author(s):  
Chai Theam Ooi ◽  
Ahmad Syahida ◽  
Johnson Stanslas ◽  
Mahmood Maziah

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Khoa Van Nguyen ◽  
Benyakan Pongkitwitoon ◽  
Thanika Pathomwichaiwat ◽  
Unchera Viboonjun ◽  
Sompop Prathanturarug

AbstractIn this study, the effects of methyl jasmonate (MeJA) on the phytomass and triterpenoid production of diploid and tetraploid Centella asiatica hairy roots were investigated. Hairy root cultures were obtained from diploid and induced tetraploid plants of C. asiatica infected by Agrobacterium rhizogenes strain ATCC 43057. MeJA triggered triterpenoid production in both ploidy hairy roots, whereas triterpenoids were not produced in the untreated hairy roots. Among the treatments, the 50 µM MeJA treatment yielded the maximum triterpenoid production in diploid hairy roots of 27.25 ± 0.27 µg/mg Dry weight (DW) total triterpenoid at day 21. For the tetraploid hairy root cultures, the 28th-day hairy root culture produced a maximum amount of triterpenoids of 16.29 ± 6.32 µg/mg DW in response to the 50 µM MeJA treatment, whereas the 100 µM MeJA treatment produced a similar triterpenoid amount (16.31 ± 9.24 µg/mg DW) at day 14. Moreover, in response to 50 µM MeJA, we obtained different ratios of aglycone to glycoside, i.e., 1:7 and 1:2, between the diploid and tetraploid hairy root cultures. Asiaticoside was the dominant phytochemical, followed by asiatic acid and madecassic acid. This study provides valuable information for producing triterpenoids for C. asiatica commercial products and preparations by using hairy root cultures.


2011 ◽  
Vol 77 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Anna Stojakowska ◽  
Jan Burczyk ◽  
Teresa Duda ◽  
Wanda Kisiel ◽  
Anna Banaś ◽  
...  

In a hairy root culture of <em>Tanacetum parthenium</em> treated with yeast extract (YE), silver nitrate (AgNO<sub>3</sub>) and microalgal glycoproteins (MGPS), contents of four spiroketal enol ether type diacetylenes were mesured. The elicitors transiently reduced contents of three constitutive spiroketal enol ethers and selectively enhanced accumulation of cis-C13-spiroketal enol ether epoxide ((E)-3,4-epoxy-2-(2,4-hexadiynylidene)-1,6-dioxaspiro[4.4]nonane) in the roots. The most abundant formation of cis-C13-spiroketal enol ether epoxide was observed after 48-96 h of AgNO<sub>3</sub> treatment and 96 h of YE treatment (over 3-fold increase compared with the control). The applied elicitors caused enhanced liberation of cis-C13-spiroketal enol ether epoxide to the culture medium. The results show that diacetylene accumulation pattern in the elicited hairy roots is affected in a similar manner, irrespectively of the elicitor applied.


Sign in / Sign up

Export Citation Format

Share Document