scholarly journals Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2O2 processes

2017 ◽  
Vol 43 (3) ◽  
pp. 24-31 ◽  
Author(s):  
Jan Paweł Bogacki ◽  
Hussein Al-Hazmi

AbstractAdvanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2process kinetics can be described as d[COD]/dt = −a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+dose, that was slightly higher than dissolved Fe used in ZVI/H2O2process. COD was decreased to 509 mg/L.

2018 ◽  
Vol 54 (4B) ◽  
pp. 277
Author(s):  
Nguyen Dien Chau

The experiment was conducted by using ozone and graphite electrodes to treat wastewater from industrial fried chicken re-processing peocesses with COD value ranges of 1600 - 2000 mgO2/L. A chamber of 20 liters was used in this study. The chamber height was 1 meter (the high response of 50-60 cm) in order to increase the diffusion of ozone into the wastewater. The study results showed that the amount of ozone needed for the reaction is 300 mg/h with COD removal efficiency of 40 % during reaction time of 45-60 minutes.The rate of BOD/COD increased within 1.55 - 1.80 times as compared with the BOD/COD rate of the initial wastewater. The experiments also showed that the COD removal efficiency of wastewater was not affected much by the pH value of the wastewater.


2012 ◽  
Vol 441 ◽  
pp. 589-592
Author(s):  
Zhi Min Fu ◽  
Yu Gao Zhang ◽  
Xiao Jun Wang

A combined process of biological wriggle bed and ozone biological aerated filter was utilized to treat textile wastewater. Results showed that COD removal efficiency was almost 90.4%. The average effluent COD was 85.87 mg/L. The effluent colority was 64-32 times. This study indicated that the combined process is potentially useful for treating textile wastewater.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2008 ◽  
Vol 57 (7) ◽  
pp. 1047-1052 ◽  
Author(s):  
U. Durán ◽  
O. Monroy ◽  
J. Gómez ◽  
F. Ramírez

The biological elimination of polymeric resins compounds (PRC) such as acrylic acid and their esters, vinyl acetate and styrene under methanogenic and oxygen-limited methanogenesis conditions was evaluated. Two UASB reactors (A and B) were used and the removal of the organic matter was studied in four stages. Reactor A was used as methanogenic control during the study. Initially both reactors were operated under methanogenic conditions. From the second stage reactor B was fed with 0.6 and 1 mg/L·d of oxygen (O2). Reactor A had diminution in chemical oxygen demand (COD) removal efficiency from 75±4% to 37±5%, by the increase of PRC loading rate from 750 to 1125 mg COD/L·d. In this reactor there was no styrene elimination. In reactor B the COD removal efficiency was between 73±5% and 80±2%, even with the addition of O2 and increase of the PRC loading rate, owing to oxygen being used in the partial oxidation of these compounds. In this reactor the yields were modified from 0.56 to 0.40 for CH4 and from 0.31 to 0.60 for CO2. The O2 in low concentrations increased 40.7% the consumption rates of acrylic acid, methyl acrylate and vinyl acetate, allowing styrene consumption with a rate of 0.103 g/L·d. Batch cultures demonstrated that under methanogenic and oxygen-limited methanogenesis conditions, the glucose was not used as an electron acceptor in the elimination of PRC.


2018 ◽  
Vol 41 (2) ◽  
pp. 165-174
Author(s):  
Mahmudur Rahman ◽  
Masud Rana ◽  
Zinia Nasreen ◽  
Md Mainul Hossain ◽  
Ayesha Sharmin

Results on the applicability of microwave assisted synthesized poly(diallyldimethyl ammonium chloride) (polyDADMAC) in reactive dye containing textile wastewater treatment are reported. Diallyldimethylammonium chloride and poly(diallyldimethylammonium chloride) have been characterized by spectral means. The microwave assisted synthesized polyDADMAC has shown some effectiveness in textile wastewater treatment. COD removal efficiency of actual textile wastewater is below 30% whereas the standard dye sample shows about 50-60% COD removal efficiency. TDS and TSS also decreased after treatment of the wastewater with polyDADMAC.Journal of Bangladesh Academy of Sciences, Vol. 41, No. 2, 165-174, 2017


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 263 ◽  
Author(s):  
Monika Kloch ◽  
Renata Toczyłowska-Mamińska

Microbial fuel cell (MFC) has the potential to become a promising sustainable technology of wastewater treatment. Usually, the investigations on MFCs are aimed at maximized power production in the system. In this article, we focused on the optimization of wood industry wastewater treatment in MFC, in combination with municipal wastewater as a source of microorganisms. We investigated the influence of different external resistance (2000 Ω, 1000 Ω, 500 Ω, and 100 Ω) on power density and wastewater treatment efficiency (chemical oxygen demand (COD) removal) in 1-month MFC operation time. We found that the highest COD removal was for MFCs under R = 1000 Ω after 22 days of MFC operation, while the highest current density was obtained for the lowest applied resistance. The results imply that wastewater treatment parameters such as resistance and time of MFC operation should be a subject of optimization for each specific type of wastewater used, in order to maximize either wastewater treatment efficiency or power production in MFC. Thus, optimization of power production and COD removal efficiency in MFCs need to be run separately as different resistances are required for maximizing these two parameters. When COD removal efficiency is a subject of optimization, there is no universal value of external resistance, but it should be set to the specific wastewater characteristics.


2010 ◽  
Vol 37 (3) ◽  
pp. 496-501 ◽  
Author(s):  
K.N. Njau ◽  
M. Renalda

A horizontal subsurface flow constructed wetland (HSSFCW) was employed to remove tannins from the effluent of a tannins extracting company. Two HSSFCW cells with hydraulic retention time (HRT) of 9 d and packed with limestone were used. One cell without macrophytes was used as a control, while the second cell was planted with Phragmites mauritianus . Results indicated that HSSFCW was capable of treating tannin wastewater that has been seeded with primary facultative pond sludge. Tannins and chemical oxygen demand (COD) removal efficiency of 95.9% and 90.6% with outlet concentration of 27 mg/L and 86 mg/L, respectively, were obtained in the planted cell; while the tannins and COD removal efficiency of 91.1% and 89.5% with outlet concentration of 57 mg/L and 96 mg/L, respectively, were obtained in the control cell.


2013 ◽  
Vol 303-306 ◽  
pp. 2616-2619
Author(s):  
Xiao Yan Sun ◽  
Pei Dao Pan ◽  
Jang Jie Wang

This mechanical processing waste emulsion for the study, handled by pulse electrolysis. Arrangements by orthogonal testing, experimental study on plate distance (d), current density (i), the pH value and the pulse width (tP) impact on COD removal efficiency, very poor analysis of test data to determine various factors affecting the COD removal efficiency of primary and secondary sort: pH value > current density > pulse width > plate distance, optimal operating conditions. Orthogonal experimental data derived from regression analysis, determination of cross of quadratic polynomial regression equations, mathematical model. Tests confirmed that pulse electrochemical method for treatment of waste emulsion with low energy consumption, short response time, and other advantages, strong applicability of wastewater, building mathematical models, providing theoretical basis for subsequent design.


2003 ◽  
Vol 47 (1) ◽  
pp. 105-111 ◽  
Author(s):  
D.D. Sun ◽  
J.L. Zeng ◽  
J.H. Tay

A 4 L submerged tubular ceramic membrane bioreactor (MBR) was applied in laboratory scale to treat 2,400 mg-COD/L high strength wastewater. A prolonged sludge retention time (SRT) of 200 day, in contrast to the conventional SRT of 5 to 15 days, was explored in this study, aiming to reduce substantially the amount of disposed sludge. The MBR system was operated for a period of 142 days in four runs, differentiated by specific oxygen utilization rate (SOUR) and hydraulic retention time (HRT). It was found that the MBR system produced more than 99% of suspended solid reduction. Mixed liquor suspended solids (MLSS) was found to be adversely proportional to HRT, and in general higher than the value from a conventional wastewater treatment plant. A chemical oxygen demand (COD) removal efficiency was achieved as high as 98% in Run 1, when SOUR was in the range of 100-200 mg-O/g-MLVSS/hr. Unexpectedly, the COD removal efficiency in Run 2 to 4 was higher than 92%, on average, where higher HRT and abnormally low SOUR of 20-30 mg-O/g-MLVSS/hr prevailed. It was noted that the ceramic membrane presented a significant soluble nutrient rejection when the microbial metabolism of biological treatment broke down.


2021 ◽  
Vol 18 (4) ◽  
pp. 135-140
Author(s):  
Sanju Sreedharan

Zero energy technologies and sustainable energy production are the two major concerns of present day researches. Microbial fuel cells (MFCs) are bioreactors that extract chemical energy stored in organic compounds, into electric potential, through bio-degradation. The core reason for the high strength of effluent generated from slaughterhouses is animal blood. The current study evaluates the potential of MFC technology to reduce the pollution strength of cattle blood in terms of chemical oxygen demand (COD). The current study was piloted in three stages using lab scale two chambered MFC: The first stage was to determine the best oxidising agent as compared to natural aeration from three accessible options, KMnO4, diffused aeration and tape grass aquatic plant. KMnO4 was found to be the superlative with a 30% reduction in COD in 100 hrs batch reactor and a maximum power of 0.97 mW using 125 mL livestock blood. The second stage of the study optimised the concentration of KMnO4. At 500 mg/L KMnO4 concentration, 50% COD removal efficiency was acquired in a batch reactor of 60 hrs with an average energy output of 1.3 mW. In the final stage on the addition of coconut shell activated carbon with an Anolyte at a rate of 40 mL/125 mL of substrate COD removal efficiency increased to 74.9%.


Sign in / Sign up

Export Citation Format

Share Document