scholarly journals Behavior of Steel Branch Connections during Fatigue Loading

2017 ◽  
Vol 62 (3) ◽  
pp. 1597-1601 ◽  
Author(s):  
A. Sládek ◽  
M. Patek ◽  
M. Mičian

AbstractFatigue behavior of the branch connection made of low-alloyed steel with yield stress of 355 MPa during low-cycle bending test is investigated in the article. Numerical prediction of the stress and strain distribution are described and experimentally verified by fatigue test of the branch connection sample. Experimental verification is based on low-cycle bending testing of the steel pipes welded by manual metal arc process and loaded by external force in the appropriate distance. Stresses and displacement of the samples induced by bending moment were measured by unidirectional strain gauges and displacement transducers. Samples were loaded in different testing levels according to required stress for 2.106 cycles. Increase of the stress value was applied until the crack formation and growth was observed. Results showed a high agreement of numerical and experimental results of stress and displacement.

2014 ◽  
Vol 521 ◽  
pp. 334-338
Author(s):  
En Wei Zhang ◽  
Yun Bo Yang ◽  
Wei Song ◽  
Xiao Wei Wei ◽  
Zhi Bin Qiu ◽  
...  

To study the mechanical properties of porcelain post insulators, the finite element model was established by ANSYS to calculate stress and strain distribution under bending or torsion moments. Mechanical tests based on resistance strain measurement technology were carried out on the actual porcelain post insulators to measure their strain distribution. The results show that sheds will cause strain concentration at the roots of porcelain column whether the post insulator is bearing bending or torsion load. The stress and strain of shed roots gradually increase from top to bottom along the post insulator when bearing bending moment, while they are relatively uniform under torsion moment. It should be taken full account of the stress concentration caused by sheds during the selection or maintenance of porcelain post insulators.


Author(s):  
Nikolay A. Makhutov ◽  
◽  
Dmitry A. Neganov ◽  
Eugeny P. Studenov ◽  
◽  
...  

In the factory, pipes for trunk oil and oil product pipelines are obtained by molding and welding. To ensure a cylindrical shape and reduce technological residual stresses, expansion technology is used. Pipe expansion causes a significant change in the values of residual deformations and stresses. The article presents both the calculation results and graphs regarding stress and strain distribution during bending of the stock and their redistribution after expansion. Based on the calculation results, the final total values of residual stresses and residual deformations caused by bending and expansion were stated to be important components of the stress-strain state observed in pipelines being operated under cyclic loading, as well as those used in assessing how degradation affects the ductility of the pipe material. These factors were concluded as being reasonably taken into account when performing verification calculations regarding long-running pipelines if, based on their diagnostics and analysis, their state does not meet modern strength requirements.


Author(s):  
Tomoya NAKAMURA ◽  
Yota TOGASHI ◽  
Kiwamu TSUNO ◽  
Noriyuki OKANO ◽  
Yukinori KOYAMA

2010 ◽  
Vol 129-131 ◽  
pp. 680-685
Author(s):  
Wei Ping Ouyang ◽  
Jian Ping Lin ◽  
Zhi Guo Lu

obtaining the law of stress and strain distribution of loaded adhesive joint has significant implication for joint design and its strength prediction. The dynamic FEM model of uniaxial tensile adhesive joint was established, in which strain fracture criteria is adopted. It can be observed from the FEM results that: lapped area of the joint bears shear stress primarily, the adherend areas located away from the lapped area bear steady tensile stress mainly and the adherend areas adjacent to lapped area endure tensile and shear stress simultaneously. Based on stress distribution characters, the joint was divided into three areas (lapped area, stress transfer area and uniform stress area) and an analytical model predicting the length of stress transfer areas was developed. DIC technology was applied to measure the whole field strain of the joint. It can be seen from the DIC results that the joints area division and the model of predicting the length of stress transfer length are feasible.


2013 ◽  
Vol 325-326 ◽  
pp. 1314-1317
Author(s):  
Cong Sheng Chen ◽  
Ping He ◽  
Cheng Yong Wang ◽  
Xue Hui Chen ◽  
Lei Huang ◽  
...  

Three-dimensional integrated modeling method and the numerical simulation of elastoplastic finite element are adopted in the paper. The mechanical response of the five holes anchorage is analyzed in certain prestressed state. The stress and strain distribution information of the anchor ring, clip and steel strand is obtained respectively, and the structure safety is discussed by investigating on the maximum stress and strain.


2021 ◽  
pp. 136943322110427
Author(s):  
Ping Zhang ◽  
Song Ren ◽  
Yunfeng Zhao ◽  
Le Wang ◽  
Nengzeng Long ◽  
...  

Concrete structures often undergo both fatigue loading and environmental impacts during their useful lifetime. This study aims to explore the fatigue properties of concrete subjected to sulfate attacks under drying–wetting cycles and loading. The coupled influences of major cycle number and sodium sulfate solution on the residual deformation, elastic modulus, and damage variable were investigated by uniaxial cyclic loading tests. Moreover, the phase composition of concrete samples was examined by X-ray diffraction. Results indicate that the concrete residual deformation and damage variable could be classified into initial and stable stages, while the elastic modulus fluctuated within a certain range. The fatigue strength of concrete was found to increase with an increase in the major cycle number and sodium sulfate concentration in the early stages, whereas the fatigue performance of concrete decreased as the major cycle number and sodium sulfate concentration increased in the later stage. The degree of influence of major cycle number and sodium sulfate concentration on the fatigue properties of concrete differed in each stage. These findings can contribute to understand the variation pattern of concrete properties in complicated environments and provide an important reference for associated construction projects.


2012 ◽  
Vol 510 ◽  
pp. 667-672
Author(s):  
Jia Lin Zhou ◽  
Chen Gang Pan ◽  
Xiao Yong Zhang

This article established 3D FE model of dual-radius arc finishing groove and tangent expansion angle finishing groove using ANSYS / LS-DYNA software for Wuhan Iron and Steel plant Ф16 hot continuous bar, and analyzed metal flow pattern, stress and strain distribution of two types finishing grooves. The results show that surface stress and strain distribution of dual-radius arc finishing groove have better uniform than them of tangent expansion angle finishing groove, and dual-radius arc finishing groove ensures the stability of the rolled piece in finishing groove, improve the dimensional accuracy and surface quality of rolled finishing product.


Sign in / Sign up

Export Citation Format

Share Document