Sedimentary Rocks Associated with the Coal Seams of the Saddle Beds from the Chwałowice Trough – West Part of Upper Silesian Coal Basin / Skały Osadowe Towarzyszące Pokładom Węgla Warstw Siodłowych Niecki Chwałowickiej – Zachodnia Część Górnośląskiego Zagłębia Węglowego

2015 ◽  
Vol 60 (1) ◽  
pp. 359-373
Author(s):  
Katarzyna Stanienda

Abstract The results of investigation of the associated rocks with the Saddle Beds Coals Seams from Chwałowice Trough were presented in this article. The results of researches show that sandstones and mudstones dominate in the investigating profile. Claystones are situated mainly in ceilings and floors of coal seams. Grains of sandstones include mainly quartz, feldspars, micas and also quartzite’s and gneiss’s fragments. It is also possible to observe small grains of heavy minerals. Some of sandstones present bad compactness and are destroyed during transportation. This feature is connected with presence of little quantity of cement, especially in medium grained sandstones, which include more matrix than typical cement. The cement is built mainly of clay minerals, kaolinite and illite, carbonates and chalcedony but X-ray diffraction confirmed also the presence of halite in the cement of investigated sandstones. Mudstones and claystones are composed mainly of clay minerals. It’s also possible to find quartz and micas there. Higher amounts of quartz and micas are possible to find rather in mudstones. The associated rocks with the Saddle Beds Coal Seams from Chwałowice Trough include also organic matter.

2014 ◽  
Vol 1611 ◽  
pp. 81-87
Author(s):  
Valeria Strokova ◽  
Mikhail Lebedev ◽  
Irina Potapova ◽  
Konstantin Sobolev

ABSTRACTAsphalt concrete is the most common material for highway and motorway construction. The quality of asphalt is determined, to a large extent, by properties of asphalt binder. Fillers, which are mineral powders from carbonate rocks and aggregates fines, such as limestone and dolomite, are often used in the composition of bitumen mastics affecting the performance of asphalt.This article explores the feasibility of using the fines of aluminosilicate sedimentary rocks as fillers. These materials are composed of clay minerals, which change their properties upon the contact with water. Normally, the use of such fillers is restricted because of poor water resistance and swelling of asphalt concrete. In order to improve the performance of these fillers, the thermal modification at moderate temperatures of 500–600 °C has been proposed. Such treatment provides sufficient structural stability of obtained materials and results in the reduction of water absorption of asphalt, improved water resistance (up to 2.5 times) and also, in reduced swelling (up to 9 times).It has been demonstrated that improvement in the filler performance can be achieved by a heat treatment. Such treatment induces changes in the mineral composition and converts the structure of clay minerals into the frame structure of zeolite, as confirmed by X-ray diffraction and infrared spectroscopy. Due to thermal treatment, there is a change in the acid-base properties of the surface of the filler, which is reflected in the profiles of the main adsorption centers. As a result, due to chemisorption, the modified aluminosilicate fillers are able to interact with bitumen. The application of new filler materials in asphalt concrete enables to enhance the performance.


2015 ◽  
Vol 60 (1) ◽  
pp. 157-172 ◽  
Author(s):  
Zdzisław Adamczyk ◽  
Barbara Białecka ◽  
Joanna Całusz Moszko ◽  
Joanna Komorek ◽  
Małgorzata Lewandowska

Abstract The subject of the research concerned the coal samples from 360/1, 361 and 362/1 seams of the Orzesze beds in the “Pniówek” coal mine. The obtained samples were characterized by low ash content - 2.22- 6.27% of the mass. The chemical composition of the ash indicates the presence of aluminosilicate minerals in the analyzed coal samples - most likely clay minerals, the presence of which has been confirmed in microscopic tests of the petrographic composition of channel samples of coal. The content of rare earth elements (REE sum) in the ash of the tested coal seams ranged from 364 to 1429 ppm. Variation of the REE content has been observed within a single seam. The fraction of REE indicates a relation with a mineral substance. No relation of the REE fraction and the presence of red beds has been found based on the tested samples. The content of REE found in ash, normalized to chondrites, is characterized by LREE enrichment in relation to HREE. The Eu anomaly is most likely related to tuff and tonstein levels occurring in Orzesze beds, which accompany the coal seams in the Upper Silesian Coal Basin (i.a., south of the studied area). The research has indicated that LREE in the tested samples are more related to the mineral substance, while HREE have a stronger affinity with organic substances.


2021 ◽  
Vol 8 (2021) (2) ◽  
pp. 1-20
Author(s):  
Marcus Brito ◽  
◽  
Marcondes Costa ◽  
Herbert Pöllmann ◽  
Helmut Hohn ◽  
...  

The present work describes the heavy minerals identified in the sand fraction of the diamond-rich alluvium of the Painin garimpo, located on the right bank of the Tapajós River, in Itaituba, Pará. In general, secondary diamond deposits, such as those found in several regions of Brazil (Minas Gerais, Bahia, Goiás, etc.) have a very characteristic assemblage of heavy minerals, in which their minerals are known as diamond satellites. In Painin these minerals were extracted from the concentration of gravel obtained with the aid of a pan, after the extraction of pebbles, silt and clay fractions. The sand fraction was sieved in several fractions and from the fractions 0.25-0125 and 0.125-0.062 mm, the non-opaque heavy minerals were separated using bromoform as a heavy liquid. Minerals were identified by optical microscopy and x-ray diffraction. They stand out in descending order and according to the fraction sand, staurolite, tourmaline, corundum, rutile, diaspore, gold, topaz, zircon, anatase and kyanite. Of these, only corundum and diaspore are not classic heavy minerals from sedimentary rocks of the great Amazon region. These two minerals are together with the phosphates of the alunite supergroup, often found in the satellites of the secondary Painin diamond deposits, but not mentioned in those mentioned above, and likely to have an affinity with the primary nature of the diamond. Rutile, anatase and iron oxides are most frequently cited in these satellites. Probably corundum, diaspore and the alunite supergroup phosphates are characteristic for Painin.


2012 ◽  
Vol 62 (3) ◽  
pp. 297-305 ◽  
Author(s):  
Teresa Dudek

ABSTRACT Dudek, T. 2012. Clay minerals as palaeoenvironmental indicators in the Bathonian (Middle Jurassic) ore-bearing clays from Gnaszyn, Kraków-Silesia Homocline. Acta Geologica Polonica, 62 (3), 297-305. Warszawa. This paper reports the results of X-ray diffraction quantitative mineralogical studies of the clay-rich Middle Jurassic sedimentary rocks from Gnaszyn, central Poland and their palaeoenvironmental interpretation. The palaeoenvironmental interpretation is aided by the fact that the sediments have not been significantly altered by diagenesis. The mineral composition is uniform throughout the succession: quartz, K-feldspar, plagioclase, calcite, gypsum, anhydrite, pyrite, illite, kaolinite, chlorite, and glauconite. The clay assemblage is dominated by illite, which alone accounts for about 20 wt% of the total mineral content. Kaolinite amounts usually <10 wt% and chlorite and glauconite occur in subordinate quantities. The clay mineral assemblage is largely of detrital origin and indicates rather cool and/or dry climatic conditions favouring mechanical erosion of the source rocks.


1962 ◽  
Vol 42 (2) ◽  
pp. 296-301 ◽  
Author(s):  
J. S. Clark ◽  
J. E. Brydon ◽  
H. J. Hortie

X-ray diffraction analysis was used to identify the clay minerals present in fourteen subsoil samples that were selected to represent some more important clay-bearing deposits in British Columbia. The clay mineralogy of the subsoils varied considerably but montmorillonitic clay minerals tended to predominate in the water-laid deposits of the south and illite in the soil parent materials of the Interior Plains region of the northeastern part of the Province.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


2021 ◽  
Vol 13 (2) ◽  
pp. 601-610
Author(s):  
K. Itiowe ◽  
R. Oghonyon ◽  
B. K. Kurah

The sediment of #3 Well of the Greater Ughelli Depobelt are represented by sand and shale intercalation. In this study, lithofacies analysis and X-ray diffraction technique were used to characterize the sediments from the well. The lithofacies analysis was based on the physical properties of the sediments encountered from the ditch cuttings.  Five lithofacies types of mainly sandstone, clayey sandstone, shaly sandstone, sandy shale and shale and 53 lithofacies zones were identified from 15 ft to 11295 ft. The result of the X-ray diffraction analysis identified that the following clay minerals – kaolinite, illite/muscovite, sepiolite, chlorite, calcite, dolomite; with kaolinite in greater percentage. The non-clay minerals include quartz, pyrite, anatase, gypsum, plagioclase, microcline, jarosite, barite and fluorite; with quartz having the highest percentage. Therefore, due to the high percentage of kaolinite in #3 well, the pore filing kaolinite may have more effect on the reservoir quality than illite/muscovite, chlorite and sepiolite. By considering the physical properties, homogenous and heterogeneous nature of the #3 Well, it would be concluded that #3 Well has some prospect for petroleum and gas exploration.


1985 ◽  
Vol 49 (352) ◽  
pp. 393-400 ◽  
Author(s):  
P. H. Nadeau ◽  
M. J. Wilson ◽  
W. J. McHardy ◽  
J. M. Tait

AbstractDiagenetic illitic clays from seven North American bentonites of Ordovician, Devonian, and Cretaceous ages and from three subsurface North Sea sandstones of Permian and Jurassic ages have been examined by X-ray diffraction (XRD) and transmission and scanning electron microscopy (TEM and SEM). XRD indicates that the clays from the bentonites are randomly and regularly interstratified illite/smectites (I/S) with 30–90% illite layers, whereas the clays from the Jurassic and Permian sandstones are regularly interstratified I/S, with 80–90% illite layers, and illite respectively. TEM of shadowed materials shows that randomly interstratified I/S consists primarily of mixtures of elementary smectite and ‘illite’ particles (10 and 20Å thick respectively) and that regularly interstratified I/S and illite consist mainly of ‘illite’ particles 20–50 Å thick and > 50 Å thick respectively. Regularly interstratified I/S from bentonites and sandstones are similar with regard to XRD character and particle thickness distribution. These observations can be rationalized if the interstratified XRD character arises from an interparticle diffraction effect, where the smectite interlayers perceived by XRD, result from adsorption of exchangeable cations and water or organic molecules at the interfaces of particles generally < 50Å thick. A neoformation mechanism is proposed by which smectite is converted to illite with increasing depth of burial in sedimentary rocks, based on dissolution of smectite particles and the precipitation/growth of ‘illite’ particles occurring within a population of thin phyllosilicate crystals.


Sign in / Sign up

Export Citation Format

Share Document