Das mehrsortige axiomatische System MS

Conceptus ◽  
2008 ◽  
Vol 37 (92) ◽  
Author(s):  
Alexander Zimmermann

SummaryIn this article we define in an exact and clear way a many-sorted axiomatical first-order system with identity and we prove its weak consistency and weak completeness. In e.g. Wang (1952) and Oberschelp (1962), the necessary definitions and proofs are often only sketched. In this article we intend to present a complete demonstration of each result. Thus we will set out each proof in a systematic way, stating all necessary definitions and lemmata. The base of our system is the axiomatical system in Mates (1972), pp. 215ff, but we do without propositional constants and propositional variables.

1963 ◽  
Vol 28 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. P. Belluce ◽  
C. C. Chang

This paper contains some results concerning the completeness of a first-order system of infinite valued logicThere are under consideration two distinct notions of completeness corresponding to the two notions of validity (see Definition 3) and strong validity (see Definition 4). Both notions of validity, whether based on the unit interval [0, 1] or based on linearly ordered MV-algebras, use the element 1 as the designated truth value. Originally, it was thought by many investigators in the field that one should be able to prove that the set of valid sentences is recursively enumerable. It was first proved by Rutledge in [9] that the set of valid sentences in the monadic first-order infinite valued logic is recursively enumerable.


2016 ◽  
Vol 136 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Akihiro Ishimura ◽  
Masayoshi Nakamoto ◽  
Takuya Kinoshita ◽  
Toru Yamamoto

1998 ◽  
Vol 5 (2) ◽  
pp. 121-138
Author(s):  
O. Jokhadze

Abstract Some structural properties as well as a general three-dimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


1994 ◽  
Vol 09 (03) ◽  
pp. 383-398 ◽  
Author(s):  
FRANÇOIS GIERES ◽  
STEFAN THEISEN

Starting from superdifferential operators in an N=1 superfield formulation, we present a systematic prescription for the derivation of classical N=1 and N=2 super W algebras by imposing a zero-curvature condition on the connection of the corresponding first-order system. We illustrate the procedure on the first nontrivial example (beyond the N=1 superconformal algebra) and also comment on the relation with the Gelfand-Dickey construction of W algebras.


Sign in / Sign up

Export Citation Format

Share Document