Kähler–Einstein metrics: From cones to cusps
2020 ◽
Vol 2020
(759)
◽
pp. 1-27
Keyword(s):
AbstractIn this note, we prove that on a compact Kähler manifold \hskip-0.569055pt{X}\hskip-0.569055pt carrying a smooth divisor D such that {K_{X}+D} is ample, the Kähler–Einstein cusp metric is the limit (in a strong sense) of the Kähler–Einstein conic metrics when the cone angle goes to 0. We further investigate the boundary behavior of those and prove that the rescaled metrics converge to a cylindrical metric on {\mathbb{C}^{*}\times\mathbb{C}^{n-1}}.
2015 ◽
Vol 366
(1-2)
◽
pp. 101-120
◽
2006 ◽
Vol 17
(01)
◽
pp. 35-43
◽
1995 ◽
Vol 10
(30)
◽
pp. 4325-4357
◽
2012 ◽
Vol 22
(2)
◽
pp. 201-248
◽
1951 ◽
Vol 47
(3)
◽
pp. 504-517
◽