scholarly journals On the boundary behavior of Kähler–Einstein metrics on log canonical pairs

2015 ◽  
Vol 366 (1-2) ◽  
pp. 101-120 ◽  
Author(s):  
Henri Guenancia ◽  
Damin Wu
2015 ◽  
Vol 58 (2) ◽  
pp. 445-483 ◽  
Author(s):  
In-Kyun Kim ◽  
Jihun Park

AbstractWe compute the global log canonical thresholds of quasi-smooth well-formed complete intersection log del Pezzo surfaces of amplitude 1 in weighted projective spaces. As a corollary we show the existence of orbifold Kähler—Einstein metrics on many of them.


2020 ◽  
Vol 2020 (759) ◽  
pp. 1-27
Author(s):  
Henri Guenancia

AbstractIn this note, we prove that on a compact Kähler manifold \hskip-0.569055pt{X}\hskip-0.569055pt carrying a smooth divisor D such that {K_{X}+D} is ample, the Kähler–Einstein cusp metric is the limit (in a strong sense) of the Kähler–Einstein conic metrics when the cone angle goes to 0. We further investigate the boundary behavior of those and prove that the rescaled metrics converge to a cylindrical metric on {\mathbb{C}^{*}\times\mathbb{C}^{n-1}}.


2017 ◽  
Vol 4 (1) ◽  
pp. 43-72 ◽  
Author(s):  
Martin de Borbon

Abstract The goal of this article is to provide a construction and classification, in the case of two complex dimensions, of the possible tangent cones at points of limit spaces of non-collapsed sequences of Kähler-Einstein metrics with cone singularities. The proofs and constructions are completely elementary, nevertheless they have an intrinsic beauty. In a few words; tangent cones correspond to spherical metrics with cone singularities in the projective line by means of the Kähler quotient construction with respect to the S1-action generated by the Reeb vector field, except in the irregular case ℂβ₁×ℂβ₂ with β₂/ β₁ ∉ Q.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


2018 ◽  
Vol 154 (8) ◽  
pp. 1593-1632 ◽  
Author(s):  
Eleonora Di Nezza ◽  
Vincent Guedj

Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.


Sign in / Sign up

Export Citation Format

Share Document