scholarly journals Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case

2021 ◽  
Vol 9 (1) ◽  
pp. 43-61
Author(s):  
Monica Billio ◽  
Lorenzo Frattarolo ◽  
Dominique Guégan

Abstract Given a d-dimensional random vector X = (X 1, . . ., X d ), if the standard uniform vector U obtained by the component-wise probability integral transform (PIT) of X has the same distribution of its point reflection through the center of the unit hypercube, then X is said to have copula radial symmetry. We generalize to higher dimensions the bivariate test introduced in [11], using three different possibilities for estimating copula derivatives under the null. In a comprehensive simulation study, we assess the finite-sample properties of the resulting tests, comparing them with the finite-sample performance of the multivariate competitors introduced in [17] and [1].

1992 ◽  
Vol 8 (4) ◽  
pp. 452-475 ◽  
Author(s):  
Jeffrey M. Wooldridge

A test for neglected nonlinearities in regression models is proposed. The test is of the Davidson-MacKinnon type against an increasingly rich set of non-nested alternatives, and is based on sieve estimation of the alternative model. For the case of a linear parametric model, the test statistic is shown to be asymptotically standard normal under the null, while rejecting with probability going to one if the linear model is misspecified. A small simulation study suggests that the test has adequate finite sample properties, but one must guard against over fitting the nonparametric alternative.


2013 ◽  
Vol 805-806 ◽  
pp. 1948-1951
Author(s):  
Tian Jin

The non-homogeneous Poisson model has been applied to various situations, including air pollution data. In this paper, we propose a kernel based nonparametric estimation for fitting the non-homogeneous Poisson process data. We show that our proposed estimator is-consistent and asymptotically normally distributed. We also study the finite-sample properties with a simulation study.


2015 ◽  
Vol 26 (4) ◽  
pp. 1912-1924 ◽  
Author(s):  
Jeong Youn Lim ◽  
Jong-Hyeon Jeong

We propose a cause-specific quantile residual life regression where the cause-specific quantile residual life, defined as the inverse of the cumulative incidence function of the residual life distribution of a specific type of events of interest conditional on a fixed time point, is log-linear in observable covariates. The proposed test statistic for the effects of prognostic factors does not involve estimation of the improper probability density function of the cause-specific residual life distribution under competing risks. The asymptotic distribution of the test statistic is derived. Simulation studies are performed to assess the finite sample properties of the proposed estimating equation and the test statistic. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.


Bernoulli ◽  
2022 ◽  
Vol 28 (1) ◽  
Author(s):  
Badr-Eddine Chérief-Abdellatif ◽  
Pierre Alquier

Sign in / Sign up

Export Citation Format

Share Document