Preparation of azobenzene-terminated polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoming Wan ◽  
Zhengbiao Zhang ◽  
Xiulin Zhu ◽  
Jian Zhu ◽  
Zhenping Cheng

AbstractThree azobenzene-based dithiocarbamates, 2-(phenylazo-phenoxycarbonyl) prop-2-yl 9H-carbazole-9-carbodithioate (APCDT), 2-(4-nitro-phenylazophenoxy- carbonyl)prop-2-yl 9H-carbazole-9-carbodithioate (ANPCDT), 2-(4-cyanophenylazo- phenoxy-carbonyl)pro-2-yl 9H-carbazole-9-carbodithioate (ACPCDT), were synthesized and used as RAFT agents in the polymerizations of styrene (St) and methyl methacrylate (MMA). The results showed that APCDT, ACPCDT and ANPCDT were effective RAFT agents for the polymerization of St. In the case of MMA, the polymerization showed hybrid behavior. The different substitutes on azobenzene moiety in dithiocarbamates did not show obvious influence on the controllability of the polymerizations. The UV and fluorescence spectra of RAFT agents and obtained azobenzene-terminated polymers were investigated

2009 ◽  
Vol 62 (3) ◽  
pp. 254 ◽  
Author(s):  
Renzo M. Paulus ◽  
C. Remzi Becer ◽  
Richard Hoogenboom ◽  
Ulrich S. Schubert

The reversible addition–fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was investigated under microwave irradiation. At first, a comparison was made between microwave and thermal heating for the RAFT polymerization of MMA with azobis(isobutyronitrile) (AIBN) as initiator and 2-cyano-2-butyldithiobenzoate (CBDB) as RAFT agent, revealing comparable polymerization kinetics indicating the absence of non-thermal microwave effects. Second, the CBDB-mediated RAFT polymerization of MMA was investigated at high temperatures (120°C, 150°C, and 180°C, respectively) in the absence of a radical initiator, showing a linear increase of the molar masses with conversion. The polydispersity indices remained below 1.5 up to 25% MMA conversion at 120°C and 150°C, indicating a controlled polymerization. This control over the polymerization was confirmed by the ability to control the molar masses by the concentration of RAFT agent.


e-Polymers ◽  
2007 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhengbiao Zhang ◽  
Xiulin Zhu ◽  
Jian Zhu ◽  
Zhenping Cheng

AbstractPoly(methyl methacrylate) peroxide (PMMAP) was synthesized and used as the initiator in the reversible addition-fragmentation chain transfer (RAFT) polymerization. Methyl methacrylate (MMA) as the monomer and 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN) as the chain transfer agent was used in the polymerization system. The polymerization was successfully initiated by PMMAP while maintaining features of “living”/controlled radical polymerization such as the number-average molecular weights (Mn) increasing linearly with the monomer conversions and low polydispersity index (PDI) values. The results of 1H NMR and IR spectra confirmed that a small quantity of polymer chains were derived from the PMMAP moieties. The PMMAP can also initiate the RAFT polymerization of styrene (St) and methyl acrylate (MA), and the polymerization proceeded in a “living”/controlled fashion.


2007 ◽  
Vol 40 (8) ◽  
pp. 2730-2736 ◽  
Author(s):  
Geoffrey Johnston-Hall ◽  
Martina H. Stenzel ◽  
Thomas P. Davis ◽  
Christopher Barner-Kowollik ◽  
Michael J. Monteiro

2021 ◽  
Author(s):  
Siva Ponnupandian ◽  
Prantik Mondal ◽  
Thomas Becker ◽  
Richard Hoogenboom ◽  
Andrew B Lowe ◽  
...  

This investigation reports the preparation of a tailor-made copolymer of furfuryl methacrylate (FMA) and trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The furfuryl groups of the copolymer...


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1164
Author(s):  
Angeliki Chroni ◽  
Thomas Mavromoustakos ◽  
Stergios Pispas

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (Mw) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA30-b-POEGA70 and PnBA27-b-POEGA73 (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA27-b-POEGA73 micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA30-b-POEGA70 + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA30-b-POEGA70 and PnBA27-b-POEGA73 micelles.


2011 ◽  
Vol 89 (3) ◽  
pp. 317-325 ◽  
Author(s):  
Binxin Li ◽  
Daniel Majonis ◽  
Peng Liu ◽  
Mitchell A. Winnik

We describe the synthesis of an end-functionalized copolymer of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-hydroxysuccinimide methacrylate (NMS) by reversible addition–fragmentation chain transfer (RAFT) polymerization. To control the polymer composition, the faster reacting monomer (NMS) was added slowly to the reaction mixture beginning 30 min after initating the polymerization (ca. 16% HPMA conversion). One RAFT agent, based on azocyanopentanoic acid, introduced a –COOH group to the chain at one end. Use of a different RAFT agent containing a 4-amino-1,8-naphthalimide dye introduced a UV–vis absorbing and fluorescent group at this chain end. The polymers obtained had molecular weights of 30 000 and 20 000, respectively, and contained about 30 mol% NMS active ester groups.


1999 ◽  
Vol 32 (21) ◽  
pp. 6977-6980 ◽  
Author(s):  
Roshan T. A. Mayadunne ◽  
Ezio Rizzardo ◽  
John Chiefari ◽  
Yen Kwong Chong ◽  
Graeme Moad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document