chain transfer polymerization
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 75)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Chengqiang Ding ◽  
Zhengbiao Zhang ◽  
zhao wang

A well-controlled piezoelectrically mediated reversible addition-fragmentation chain transfer polymerization (piezo-RAFT) was carried out under ultrasound agitation with piezoelectric ZnO nanoparticles as the mechano-chemical trans-ducer. The resulting polymer had predictable molecular weight, high end-group fidelity, low dispersity, and capacity for chain extension. This chemistry was further adopted in curing composite resins to circumvent the light penetration limit of UV curing. This work opened a new avenue of piezoelectrically mediated chemistry and showed its good potential in curing applications.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Davood Hassanian-Moghaddam ◽  
Seyed Mohammad Mahdi Mortazavi ◽  
Saeid Ahmadjo ◽  
Mona Doveirjavi ◽  
Abbas Rahmati ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6793
Author(s):  
Xiaofei Yan ◽  
Chenkai Zhu ◽  
Ju Huang ◽  
Dongmin Qi ◽  
Jiawei Li

The growth and reproduction of microorganisms on fabrics could not only affect the wearability of textiles but also cause harm to human health, and it is an important problem that should be solved to reduce the adsorption and growth of microorganisms on the surface of the fabric. A series of ω-vinyl betaine copolymers were synthesized by catalytic chain transfer polymerization (CCTP) and were modified by mercapto-vinyl click chemistry to synthesize silane-modified betaine copolymers, which were used to treat the cotton fabric. The hydrophilic–hydrophobic transition performance and anti-protein specific adhesion performance of cotton fabric with the betaine copolymer were systematically investigated. The copolymer was confirmed to be successfully finished on the cotton fabric via 1H–NMR and FTIR. The cotton fabric, which was treated by the betaine copolymer, presented temperature response performance in the range of 30–55 °C and had excellent anti-protein adsorption performance. The treated fabric had the best temperature-sensitive and anti-protein specific absorption performance among all the specimens when the mass fraction of G06B in DMAPS was 6 wt.%.


Author(s):  
Kate G. E. Bradford ◽  
Leilah M. Petit ◽  
Richard Whitfield ◽  
Athina Anastasaki ◽  
Christopher Barner-Kowollik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document