scholarly journals A foundational approach to the Lie theory for fractional order partial differential equations

Author(s):  
Rosario Antonio Leo ◽  
Gabriele Sicuro ◽  
Piergiulio Tempesta

AbstractWe provide a general theoretical framework allowing us to extend the classical Lie theory for partial differential equations to the case of equations of fractional order. We propose a general prolongation formula for the study of Lie symmetries in the case of an arbitrary finite number of independent variables. We also prove the Lie theorem in the case of fractional differential equations, showing that the proper space for the analysis of these symmetries is the infinite dimensional jet space.

2012 ◽  
Vol 16 (2) ◽  
pp. 331-334 ◽  
Author(s):  
Ji-Huan He ◽  
Zheng-Biao Li

A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.


Author(s):  
Nkosingiphile Mnguni ◽  
Sameerah Jamal

Abstract This paper considers two categories of fractional-order population growth models, where a time component is defined by Riemann–Liouville derivatives. These models are studied under the Lie symmetry approach, and we reduce the fractional partial differential equations to nonlinear ordinary differential equations. Subsequently, solutions of the latter are determined numerically or with the aid of Laplace transforms. Graphical representations for integral and trigonometric solutions are presented. A key feature of these models is the connection between spatial patterning of organisms versus competitive coexistence.


1958 ◽  
Vol 10 ◽  
pp. 127-160 ◽  
Author(s):  
G. F. D. Duff

A mixed problem in the theory of partial differential equations is an auxiliary data problem wherein conditions are assigned on two distinct surfaces having an intersection of lower dimension. Such problems have usually been formulated in connection with hyperbolic differential equations, with initial and boundary conditions prescribed. In this paper a study is made of the conditions appropriate to a system of R linear partial differential equations of first order, in R dependent and N independent variables.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


Sign in / Sign up

Export Citation Format

Share Document