scholarly journals Fourier transforms of powers of well-behaved 2D real analytic functions

2018 ◽  
Vol 30 (3) ◽  
pp. 723-732
Author(s):  
Michael Greenblatt

AbstractThis paper is a companion paper to [6], where sharp estimates are proven for Fourier transforms of compactly supported functions built out of two-dimensional real-analytic functions. The theorems of [6] are stated in a rather general form. In this paper, we expand on the results of [6] and show that there is a class of “well-behaved” functions that contains a number of relevant examples for which such estimates can be explicitly described in terms of the Newton polygon of the function. We will further see that for a subclass of these functions, one can prove noticeably more precise estimates, again in an explicitly describable way.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Yanling Shi ◽  
Jia Li

We study the following two-order differential equation,(Φp(x'))'+f(x,t)Φp(x')+g(x,t)=0,whereΦp(s)=|s|(p-2)s,p>0.f(x,t)andg(x,t)are real analytic functions inxandt,2aπp-periodic inx, and quasi-periodic intwith frequencies(ω1,…,ωm). Under some odd-even property off(x,t)andg(x,t), we obtain the existence of invariant curves for the above equations by a variant of small twist theorem. Then all solutions for the above equations are bounded in the sense ofsupt∈R|x′(t)|<+∞.


2018 ◽  
Vol 42 (2) ◽  
pp. 159-167
Author(s):  
André Boivin ◽  
Paul M. Gauthier ◽  
Myrto Manolaki

2019 ◽  
Vol 75 (1) ◽  
Author(s):  
Céline Esser ◽  
Gerhard Schindl

AbstractThe Borel map $$j^{\infty }$$j∞ takes germs at 0 of smooth functions to the sequence of iterated partial derivatives at 0. It is well known that the restriction of $$j^{\infty }$$j∞ to the germs of quasianalytic ultradifferentiable classes which are strictly containing the real analytic functions can never be onto the corresponding sequence space. In a recent paper the authors have studied the size of the image of $$j^{\infty }$$j∞ by using different approaches and worked in the general setting of quasianalytic ultradifferentiable classes defined by weight matrices. The aim of this paper is to show that the image of $$j^{\infty }$$j∞ is also small with respect to the notion of algebrability and we treat both the Cauchy product (convolution) and the pointwise product. In particular, a deep study of the stability of the considered spaces under the pointwise product is developed.


2013 ◽  
Vol 50 ◽  
pp. 197-207 ◽  
Author(s):  
C. Cadavid ◽  
S. Molina ◽  
J.D. Vélez

Sign in / Sign up

Export Citation Format

Share Document