compactly supported functions
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Bartłomiej Dyda ◽  
Michał Kijaczko

AbstractWe describe some sufficient conditions, under which smooth and compactly supported functions are or are not dense in the fractional Sobolev space $$W^{s,p}(\Omega )$$ W s , p ( Ω ) for an open, bounded set $$\Omega \subset \mathbb {R}^{d}$$ Ω ⊂ R d . The density property is closely related to the lower and upper Assouad codimension of the boundary of $$\Omega$$ Ω . We also describe explicitly the closure of $$C_{c}^{\infty }(\Omega )$$ C c ∞ ( Ω ) in $$W^{s,p}(\Omega )$$ W s , p ( Ω ) under some mild assumptions about the geometry of $$\Omega$$ Ω . Finally, we prove a variant of a fractional order Hardy inequality.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2830
Author(s):  
Aigerim Kalybay ◽  
Ryskul Oinarov ◽  
Yaudat Sultanaev

In the paper, we establish the oscillatory and spectral properties of a class of fourth-order differential operators in dependence on integral behavior of its coefficients at zero and infinity. In order to obtain these results, we investigate a certain weighted second-order differential inequality of independent interest.


Author(s):  
Adel N. Boules

The Lebesgue measure on ?n (presented in section 8.4) is a pivotal component of this chapter. The approach in the chapter is to extend the positive linear functional provided by the Riemann integral on the space of continuous, compactly supported functions on ?n (presented in section 8.1). An excursion on Radon measures is included at the end of section 8.4. The rest of the sections are largely independent of sections 8.1 and 8.4 and constitute a deep introduction to general measure and integration theories. Topics include measurable spaces and measurable functions, Carathéodory’s theorem, abstract integration and convergence theorems, complex measures and the Radon-Nikodym theorem, Lp spaces, product measures and Fubini’s theorem, and a good collection of approximation theorems. The closing section of the book provides a glimpse of Fourier analysis and gives a nice conclusion to the discussion of Fourier series and orthogonal polynomials started in section 4.10.


Author(s):  
Pekka Koskela ◽  
Khanh Ngoc Nguyen ◽  
Zhuang Wang

AbstractThe boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with a weighted distance and a weighted measure via the Euclidean arc-length and consider the associated first-order Sobolev spaces. We give characterizations for the existence of traces and for the density of compactly supported functions.


2021 ◽  
Vol 312 (1) ◽  
pp. 179-193
Author(s):  
A. A. Kalybay ◽  
Zh. A. Keulimzhayeva ◽  
R. Oinarov

2021 ◽  
Vol 26 (1) ◽  
pp. 94-115
Author(s):  
Bahar Karaman

This research describes an efficient numerical method based on Wendland’s compactly supported functions to simulate the time-space fractional coupled nonlinear Schrödinger (TSFCNLS) equations. Here, the time and space fractional derivatives are considered in terms of Caputo and Conformable derivatives, respectively. The present numerical discussion is based on the following ways: we first approximate the Caputo fractional derivative of the proposed equation by a scheme order O(∆t2−α), 0 < α < 1 and then the Crank-Nicolson scheme is employed in the mentioned equation to discretize the equations. Second, applying a linear difference scheme to avoid solving nonlinear systems. In this way, we have a linear, suitable calculation scheme. Then, the conformable fractional derivatives of the Wendland’s compactly supported functions are established for the scheme. The stability analysis of the suggested scheme is also examined in a similar way to the classic Von-Neumann technique for the governing equations. The efficiency and accuracy of the present method are verified by solving two examples.


Author(s):  
Soha Ali Salamah

  In this paper, we talk about Heisenberg group, the most known example from the lie groups. After that, we discuss the representation theory of this group and the relationship between the representation theory of the Heisenberg group and the position and momentum operators and momentum operators relationship between the representation theory of the Heisenberg group and the position and momentum that shows how we will make the connection between the Heisenberg group and physics. we have considered only the Schrodinger picture. That is, all the representations we considered are realized in the Hilbert space . we define the group Fourier transform on the Heisenberg group as an operator-valued function, and other facts and properties. In our research, we depended on new formulas for some mathematical concepts such as Fourier Transform and Weyl transform. The main aim of our research is to introduce the Paley_ Wiener theorem for the Fourier transform on the Heisenberg group. We will show that the classical Paley_ Wiener theorem for the Euclidean Fourier transform characterizes compactly supported functions in terms of the behaviour of their Fourier transforms and Weyl transform. And we are interested in establishing results for the group Fourier transform and the Weyl transform.


2020 ◽  
Vol 23 (4) ◽  
pp. 967-979
Author(s):  
Boris Rubin ◽  
Yingzhan Wang

AbstractWe apply Erdélyi–Kober fractional integrals to the study of Radon type transforms that take functions on the Grassmannian of j-dimensional affine planes in ℝn to functions on a similar manifold of k-dimensional planes by integration over the set of all j-planes that meet a given k-plane at a right angle. We obtain explicit inversion formulas for these transforms in the class of radial functions under minimal assumptions for all admissible dimensions. The general (not necessarily radial) case, but for j + k = n − 1, n odd, was studied by S. Helgason [8] and F. Gonzalez [4, 5] on smooth compactly supported functions.


Sign in / Sign up

Export Citation Format

Share Document