In [G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook, Part II (Springer, New York, 2009), Entry 3.4.7, p. 67; Y.-S. Choi, The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24(3) (2011) 345–386; B. Chen, Mock theta functions and Appell–Lerch sums, J. Inequal Appl. 2018(1) (2018) 156; E. Mortenson, Ramanujan’s radial limits and mixed mock modular bilateral [Formula: see text]-hypergeometric series, Proc. Edinb. Math. Soc. 59(3) (2016) 1–13; W. Zudilin, On three theorems of Folsom, Ono and Rhoades, Proc. Amer. Math. Soc. 143(4) (2015) 1471–1476], the authors found the bilateral series for the universal mock theta function [Formula: see text]. In [Choi, 2011], the author presented the bilateral series connected with the odd-order mock theta functions in terms of Appell–Lerch sums. However, the author only derived the associated bilateral series for the fifth-order mock theta functions. The purpose of this paper is to further derive different types of bilateral series for the third-order mock theta functions. As applications, the identities between the two-group bilateral series are obtained and the bilateral series associated to the third-order mock theta functions are in fact modular forms. Then, we consider duals of the second type in terms of Appell–Lerch sums and duals in terms of partial theta functions defined by Hickerson and Mortenson of duals of the second type in terms of Appell–Lerch sums of such bilateral series associated to some third-order mock theta functions that Chen did not discuss in [On the dual nature theory of bilateral series associated to mock theta functions, Int. J. Number Theory 14 (2018) 63–94].