scholarly journals Late Miocene sedimentary record of the Danube/Kisalföld Basin: interregional correlation of depositional systems, stratigraphy and structural evolution

2016 ◽  
Vol 67 (6) ◽  
pp. 525-542 ◽  
Author(s):  
Orsolya Sztanó ◽  
Michal Kováč ◽  
Imre Magyar ◽  
Michal Šujan ◽  
László Fodor ◽  
...  

AbstractThe Danube / Kisalföld Basin is the north-western sub-basin of the Pannonian Basin System. The lithostratigraphic subdivision of the several-km-thick Upper Miocene to Pliocene sedimentary succession related to Lake Pannon has been developed independently in Slovakia and Hungary. A study of the sedimentary formations across the entire basin led us to claim that these formations are identical or similar between the two basin parts to such an extent that their correlation is indeed a matter of nomenclature only. Nemčiňany corresponds to the Kálla Formation, representing locally derived coarse clastics along the basin margins (11- 9.5 Ma). The deep lacustrine sediments are collectively designated the Ivanka Formation in Slovakia, while in Hungary they are subdivided into Szák (fine-grained transgressive deposits above basement highs, 10.5 - 8.9 Ma), Endrőd (deep lacustrine marls, 11.6 -10 Ma), Szolnok (turbidites, 10.5 - 9.2 Ma) and Algyő Formations (fine-grained slope deposits, 10 - 9 Ma). The Beladice Formation represents shallow lacustrine deltaic deposits, fully corresponding to Újfalu (10.5 - 8.7 Ma). The overlying fluvial deposits are the Volkovce and Zagyva Formations (10 - 6 Ma). The synoptic description and characterization of these sediments offer a basin-wide insight into the development of the basin during the Late Miocene. The turbidite systems, the slope, the overlying deltaic and fluvial systems are all genetically related and are coeval at any time slice after the regression of Lake Pannon initiated about 10 Ma ago. All these formations get younger towards the S, SE as the progradation of the shelf-slope went on. The basin got filled up to lake level by 8.7 Ma, since then fluvial deposition dominated.

2011 ◽  
Vol 62 (3) ◽  
pp. 267-278 ◽  
Author(s):  
Ljupko Rundić ◽  
Meri Ganić ◽  
Slobodan Knežević ◽  
Ali Soliman

Upper Miocene Pannonian sediments from Belgrade (Serbia): new evidence and paleoenvironmental considerationsThe Late Miocene sublittoral marls of the Pannonian Stage (the long-lived Lake Pannon) were studied. From neotectonic point of view, the investigated area represents a natural border between two different morphostructural domains: the Pannonian Basin to the north and the Peri-Pannonian Realm to the south. More than 20 mollusc and 34 ostracod species were identified which indicate the upper part of the Lower Pannonian and the lower part of the Middle Pannonian ("Serbian") predominantly. The identified dinoflagellate cyst assemblage (21 taxa) hinders assignment of the studied samples to a Pannonian substage but supports the high endemism of the Pannonian flora. The lithostratigraphical, paleontological, and paleoecological analyses indicate a mesohaline (8-16 ‰), sublittoral (<90 m deep) environment of the early Lake Pannon. The estimated stratigraphic range for the investigated deposits is 9.8-11.4 Ma.


2018 ◽  
Vol 6 (1) ◽  
pp. SB111-SB122 ◽  
Author(s):  
Ferenc Horváth ◽  
Ivan Dulić ◽  
Alan Vranković ◽  
Balázs Koroknai ◽  
Tamás Tóth ◽  
...  

The Pannonian Basin is an intraorogenic extensional region floored by a complex system of Alpine orogenic terranes and oceanic suture zones. Its formation dates back to the beginning of the Miocene, and initial fluvial-lacustrine deposits pass into shallow to open marine strata, including a large amount of calc-alkaline volcanic materials erupted during the culmination of the synrift phase. The onset of the postrift phase occurred during the Late Miocene, when the basin became isolated and a large Pannonian lake developed. Early lacustrine marls are overlain by turbiditic sandstones and silts related to a progradational shelf slope and a delta plain sequence passing upward into alluvial plain deposits and eolian sands. A remarkable nonconformity at the top of lacustrine strata associated with a significant (4–7 my) time gap at large parts of the basin documents a neotectonic phase of activity, manifested by regional strike-slip faulting and kilometer-scale differential vertical movements, with erosion and redeposition. Subsidence and burial history modeling indicate that Middle and Late Miocene, fairly organic-rich marine and lacustrine (respectively) shales entered into the oil-generation window at about the beginning of the Pliocene in depocenters deeper than 2.5–3 km, and even reached the wet to dry gas-generation zone at depths exceeding 4–4.5 km. Migration out of these kitchens has been going on since the latest Miocene toward basement highs, where anticlines and flower structures offered adequate trapping conditions for hydrocarbons. We argue that compaction of thick sedimentary piles, in addition to neotectonic structures, has also been important in trap formation within the Pannonian Basin.


2019 ◽  
Vol 7 (4) ◽  
pp. SH19-SH31
Author(s):  
Gabriela Salomão Martins ◽  
Webster Ueipass Mohriak ◽  
Nivaldo Destro

The Sergipe-Alagoas Basin, situated in the north-east Brazilian margin, has a long tradition of oil and gas production and the presence and distribution of evaporites play an important role in petroleum systems in the basin. However, little research has focused on the structural evolution of the older, synrift evaporitic sections of the basin. We have focused explicitly in the detailed subsurface structural characterization of the rift in the Alagoas subbasin and the distribution of the Early Aptian evaporites. To accomplish this objective, we interpreted selected 2D and 3D seismic and well data located in two areas known as the Varela Low (VL) and Fazenda Guindaste Low (FGL). We identified diverse deformation styles in those two basin depocenters. Our interpretation indicates that VL consists of a half-graben with a significant rollover structure, controlled by two listric northeast–southwest border faults. The deformation in the hanging wall is also accommodated by release faults and minor antithetic faults. In this depocenter, we mapped in the seismic and the well data an older evaporitic sequence within the Coqueiro Seco Fm., known as Horizonte Salt. This evaporitic section occurs in the internal part of the VL half graben, where it is limited by release and antithetic faults. Significant salt strata growing toward the antithetic fault is observed. Whereas, the FGL represents a graben elongated along the north-east direction and is controlled by several types of structures. We recognized normal synthetic and antithetic faults, transfer zones, release faults, and rollover anticlines in the seismic throughout this depocenter. We mapped an evaporitic section within the Maceió Fm., known as Paripueira Salt, which consists of disconnected salt bodies, restricted to the hanging walls of synrift faults.


2011 ◽  
Vol 62 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Wieske Paulissen ◽  
Stefan Luthi ◽  
Patrick Grunert ◽  
Stjepan Ćorić ◽  
Mathias Harzhauser

Integrated high-resolution stratigraphy of a Middle to Late Miocene sedimentary sequence in the central part of the Vienna BasinIn order to determine the relative contributions of tectonics and eustasy to the sedimentary infill of the Vienna Basin a high-resolution stratigraphic record of a Middle to Late Miocene sedimentary sequence was established for a well (Spannberg-21) in the central part of the Vienna Basin. The well is located on an intrabasinal high, the Spannberg Ridge, a location that is relatively protected from local depocentre shifts. Downhole magnetostratigraphic measurements and biostratigraphical analysis form the basis for the chronostratigraphic framework. Temporal gaps in the sedimentary sequence were quantified from seismic data, well correlations and high-resolution electrical borehole images. Stratigraphic control with this integrated approach was good in the Sarmatian and Pannonian, but difficult in the Badenian. The resulting sedimentation rates show an increase towards the Upper Sarmatian from 0.43 m/kyr to > 1.2 m/kyr, followed by a decrease to relatively constant values around 0.3 m/kyr in the Pannonian. The sequence reflects the creation of accommodation space during the pull-apart phase of the basin and the subsequent slowing of the tectonic activity. The retreat of the Paratethys from the North Alpine Foreland Basin during the Early Sarmatian temporarily increased the influx of coarsergrained sediment, but eventually the basin acted mostly as a by-pass zone of sediment towards the Pannonian Basin. At a finer scale, the sequence exhibits correlations with global eustasy indicators, notably during the Sarmatian, the time of greatest basin subsidence and full connectivity with the Paratethyan system. In the Pannonian the eustatic signals become weaker due to an increased isolation of the Vienna Basin from Lake Pannon.


2010 ◽  
Vol 61 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Boris Vrbanac ◽  
Josipa Velić ◽  
Tomislav Malvić

Sedimentation of deep-water turbidites in the SW part of the Pannonian BasinThe Sava Depression and the Bjelovar Subdepression belong to the SW margin of the Pannonian Basin System, which was part of the Central Paratethys during the Pannonian period. Upper Pannonian deposits of the Ivanic-Grad Formation in the Sava Depression include several lithostratigraphic members such as Iva and Okoli Sandstone Member or their lateral equivalents, the Zagreb Member and Lipovac Marlstone Member. Their total thickness in the deepest part of the Sava Depression reaches up to 800 meters, while it is 100-200 meters in the margins of the depression. Deposits in the depression are composed of 4 facies. In the period of turbiditic activities these facies are primarily sedimented as different sandstone bodies. In the Bjelovar Subdepression, two lithostratigraphic members (lateral equivalent) were analysed, the Zagreb Member and Okoli Sandstone Member. The thickness of the Bjelovar Subdepression ranges from 50 meters along the S and SE margins to more than 350 meters along the E margin. Generally, detritus in the north-west part of the analysed area originated from a single source, the Eastern Alps, as demonstrated by sedimentological and physical properties, the geometry of the sandstone body and the fossil content. This clastic material was found to be dispersed throughout the elongated and relatively narrow Sava Depression and in the smaller Bjelovar Subdepression. Sedimentation primarily occurred in up to 200 meters water depth and was strongly influenced by the sub-aqueous paleorelief, which determined the direction of the flow of turbidity currents and sandstone body geometries. The main stream with medium- and fine-grained material was separated by two independent turbiditic flows from N-NW to the SE-E. Variability in the thickness of sandstone bodies is the result of differences in subsidence and cycles of progradation and retrogradation of turbidite fans.


2021 ◽  
Vol 151 (4) ◽  
pp. 411-422
Author(s):  
Krisztina Sebe

The Pécs-Danitzpuszta sand pit in southern Hungary exposes middle and upper Miocene (Badenian to Pannonian/Langhian to Tortonian) sediments along the mountain front fault zone of the Mecsek Mts and preserves an essential record of tectonic events during and after the early late Miocene, which are not exposed elsewhere in the region. In this paper we present structural observations recorded over 20 years of work, date the deformation events with mollusk biostratigraphy and make inferences on the structural evolution of the area. At the beginning of the time interval between 10.2–10.0 Ma, NNW–SSE (to NW–SE) extension created normal faults and negative flower structures. These show that extension-related fault activity lasted here up to the late Miocene. Shortly thereafter, still in the early part of the time interval between 10.2–10.0 Ma, N–S to NNW–SSE compression ensued and dominated the area ever since. Deformations under this stress field included reverse faulting in the Pannonian marls and sands, folding of the whole succession, with bedding-plane slip and shearingelated block rotation in the already deposited middle and upper Miocene marl layers and continuously changing bedding dips and southward thickening layers in the Pannonian sands. Lake level changes of Lake Pannon must have played a role in the formation of an angular unconformity within the sands besides compression. The compressional event can be explained by the Africa (Adria) – Europe convergence, but cannot be correlated regionally; it pre-dates basin inversion-related events reported from the region so far.


Author(s):  
A.V. Vranjkovic ◽  
I. Dulic ◽  
T.V. Olneva ◽  
A. Rodionov ◽  
O. Popov ◽  
...  
Keyword(s):  

2010 ◽  
Vol 61 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Dejan Radivojević ◽  
Ljupko Rundić ◽  
Slobodan Knežević

Geology of the Čoka structure in northern Banat (Central Paratethys, Serbia)The Čoka structure is a fault-bounded anticline in northern Banat, in the southern part of the Neogene Pannonian Basin. The structure and its vicinity were explored by 24 wells. In addition to well logs, paleontological, sedimentological and petrological analyses of cores and 27 seismic sections with different parameters of acquisition and processing were used for geological investigation of the area. The E-SE dipping pre-Neogene basement consists of Lower Triassic clastics and, in the NW part of the study area, Paleozoic greenschists. Thin Middle Miocene (Badenian) sediments unconformably overlie the basement and pinch out towards the elevated NW part of the study area. They are also missing in some wells on the apex of the Čoka structure, probably due to erosion. Badenian sediments were deposited in a shallow marine environment. The late Middle Miocene (Sarmatian) strata are missing and the Badenian is directly overlain by Upper Miocene (Pannonian) sediments. The latter also pinch out towards the NW but in contrast to Badenian sediments, they are present in all boreholes on the Čoka structure. Pannonian deposition took place in a caspibrackish environment of Lake Pannon, with predominance of marls and fine-grained clastics. Pannonian sediments are conformably overlain by latest Miocene (Pontian) and Pleistocene lacustrine, alluvial and terrestrial sediments.


2015 ◽  
Vol 51 (1) ◽  
pp. 001 ◽  
Author(s):  
Michael C. Rygel ◽  
Corinne Lally ◽  
Martin R. Gibling ◽  
Alessandro Ielpi ◽  
John H. Calder ◽  
...  

<p style="margin: 0in 0in 0pt;"><span style="font-family: 'Minion Pro','serif';"><span style="font-size: medium;">The 1125-m-thick type section of the Pennsylvanian Boss Point Formation is well exposed along the shore of the Bay of Fundy in Nova Scotia. We provide the first comprehensive account of the entirety of this formation, which comprises nearly one-third of the stratigraphic thickness of the Joggins Fossil Cliffs UNESCO World Heritage Site. The basal Chignecto Bay Member (0–91.5 m) is composed of redbeds, single-storey channel bodies with northerly paleoflow, and thin palustrine limestones. The middle Ward Point Member (91.5–951.7 m) contains up to 16 megacycles composed of alternations between thick packages of braided fluvial sandstone and fine-grained deposits. Although regional studies of the Boss Point Formation suggest that the fine-grained deposits are largely composed of lacustrine sediments, these intervals consist largely of poorly drained and well-drained floodplain deposits in the type section. The facies variations and southeast-directed paleoflow in the Ward Point Member record modest uplift associated with the growth of the salt-cored Minudie Anticline. The North Reef Member (951.7–1125 m) is composed of redbeds and two distinctive multistorey channel bodies. This uppermost member records a shift to more arid, oxidizing conditions, was the precursor to a major phase of salt withdrawal, and represents a transition to the overlying Little River Formation. The sedimentological framework, revised stratigraphy, and detailed measured section and map will provide a foundation for future study of this remarkable Pennsylvanian exposure.</span></span></p>


PalZ ◽  
2019 ◽  
Vol 94 (2) ◽  
pp. 353-366
Author(s):  
Zoltán Szentesi ◽  
Krisztina Sebe ◽  
Márton Szabó

AbstractThe Late Miocene fossil locality Pécs-Danitzpuszta (Mecsek Mts., Hungary) has yielded cranial and postcranial bones of giant salamanders. Based on taxonomical studies, these relatively well-preserved, isolated bones belong to the cryptobranchid species Andrias scheuchzeri. Whereas the species is well documented from Neogene of Central Europe, this is the first record of the genus Andrias from Hungary, representing the sole record of giant salamanders from the country. The fossils were found in Upper Miocene sands deposited in the brackish Lake Pannon, but their late Miocene age is uncertain, because they occur together with vertebrate remains reworked from older sediments. The mild and humid climate and the presence of freshwater wetlands on the mainland indicated by the fossil flora, the syn-depositional uplift of the mountains providing for a rugged topography, and the intense clastic sediment input into Lake Pannon indicative of a fluvial network on the Mecsek Island and of sufficient precipitation support that conditions were convenient for the giant salamanders in the early late Miocene. Together with three other late Miocene localities in Austria, the Pécs-Danitzpuszta site is the fourth Miocene occurrence of Andrias in the Pannonian Basin System. It resembles the first three localities in lying at the foot of elevated terrain and in having freshwater input, conditions thought to be necessary for giant salamander habitats.


Sign in / Sign up

Export Citation Format

Share Document