scholarly journals Morava K(s)*-rings of the extensions of Cp by the products of good groups under diagonal action

2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Malkhaz Bakuradze
Keyword(s):  

AbstractThis note provides a theorem on good groups in the sense of Hopkins–Kuhn–Ravenel [J. Amer. Math. Soc. 13 (2000), no. 3, 553–594] and some relevant examples.

Author(s):  
Ingrid Bauer ◽  
Christian Gleissner

AbstractIn this paper the authors study quotients of the product of elliptic curves by a rigid diagonal action of a finite group G. It is shown that only for $$G = {{\,\mathrm{He}\,}}(3), {\mathbb {Z}}_3^2$$ G = He ( 3 ) , Z 3 2 , and only for dimension $$\ge 4$$ ≥ 4 such an action can be free. A complete classification of the singular quotients in dimension 3 and the smooth quotients in dimension 4 is given. For the other finite groups a strong structure theorem for rigid quotients is proven.


2001 ◽  
Vol 12 (01) ◽  
pp. 97-111 ◽  
Author(s):  
TATSURU TAKAKURA

We present an explicit formula for cohomology intersection pairings on an arbitrary smooth symplectic quotient of products of 2-spheres, by the standard diagonal action of SO3, without using known results on relations in the cohomology ring. By the Poincaré duality, it contains all the information enough to recover the structure of the cohomology ring. Our method is based on the commutativity of geometric quantization and symplectic reduction, originating from a conjecture of Guillemin-Sternberg. In fact, it enables us to derive a formula for the generating function of the intersection pairings.


10.37236/1716 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Yurii Burman ◽  
Michael Shapiro

We introduce a new class of admissible pairs of triangular sequences and prove a bijection between the set of admissible pairs of triangular sequences of length $n$ and the set of parking functions of length $n$. For all $u$ and $v=0,1,2,3$ and all $n\le 7$ we describe in terms of admissible pairs the dimensions of the bi-graded components $h_{u,v}$ of diagonal harmonics ${\Bbb{C}}[x_1,\dots,x_n;y_1,\dots,y_n]/S_n$, i.e., polynomials in two groups of $n$ variables modulo the diagonal action of symmetric group $S_n$.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
J. Haglund

International audience A special case of Haiman's identity [Invent. Math. 149 (2002), pp. 371–407] for the character of the quotient ring of diagonal coinvariants under the diagonal action of the symmetric group yields a formula for the bigraded Hilbert series as a sum of rational functions in $q,t$. In this paper we show how a summation identity of Garsia and Zabrocki for Macdonald polynomial Pieri coefficients can be used to transform Haiman's formula for the Hilbert series into an explicit polynomial in $q,t$ with integer coefficients. We also provide an equivalent formula for the Hilbert series as the constant term in a multivariate Laurent series. Un cas spécial de l'identité de Haiman [Invent. Math. \textbf149 (2002), pp. 371–407] pour le caractère de l'anneau quotient des coinvariants diagonaux sous l'action du groupe symétrique fournit une formule pour la série de Hilbert bigraduée comme somme de fonctions rationnelles en q,t. Dans cet article nous montrons comment une identité de sommation de Garsia et Zabrocki pour les coefficients de Pieri des polynômes de Macdonald peut être utilisée pour transformer la formule de Haiman pour la série de Hilbert en un polynôme explicite en q,t à coefficients entiers. Nous présentons également une formule équivalente pour la série de Hilbert comme terme constant d'une série de Laurent multivariée.


Sign in / Sign up

Export Citation Format

Share Document