diagonal harmonics
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2019 ◽  
Vol 71 (6) ◽  
pp. 1495-1521
Author(s):  
Ricky Ini Liu ◽  
Alejandro H. Morales ◽  
Karola Mészáros

AbstractA result of Haglund implies that the$(q,t)$-bigraded Hilbert series of the space of diagonal harmonics is a$(q,t)$-Ehrhart function of the flow polytope of a complete graph with netflow vector$(-n,1,\ldots ,1)$. We study the$(q,t)$-Ehrhart functions of flow polytopes of threshold graphs with arbitrary netflow vectors. Our results generalize previously known specializations of the mentioned bigraded Hilbert series at$t=1$,$0$, and$q^{-1}$. As a corollary to our results, we obtain a proof of a conjecture of Armstrong, Garsia, Haglund, Rhoades, and Sagan about the$(q,q^{-1})$-Ehrhart function of the flow polytope of a complete graph with an arbitrary netflow vector.


10.37236/6877 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Jason O'Neill

Tesler matrices are certain integral matrices counted by the Kostant partition function and have appeared recently in Haglund's study of diagonal harmonics. In 2014, Drew Armstrong defined a poset on such matrices and conjectured that the characteristic polynomial of this poset is a power of $q-1$. We use a method of Hallam and Sagan to prove a stronger version of this conjecture for posets of a certain class of generalized Tesler matrices. We also study bounds for the number of Tesler matrices and how they compare to the number of parking functions, the dimension of the space of diagonal harmonics.


10.37236/6714 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

Let $\Phi$ be an irreducible crystallographic root system with Weyl group $W$, coroot lattice $\check{Q}$ and Coxeter number $h$. Recently the second named author defined a uniform $W$-isomorphism $\zeta$ between the finite torus $\check{Q}/(mh+1)\check{Q}$ and the set of non-nesting parking functions $\operatorname{Park}^{(m)}(\Phi)$. If $\Phi$ is of type $A_{n-1}$ and $m=1$ this map is equivalent to a map defined on labelled Dyck paths that arises in the study of the Hilbert series of the space of diagonal harmonics. In this paper we investigate the case $m=1$ for the other infinite families of root systems ($B_n$, $C_n$ and $D_n$). In each type we define models for the finite torus and for the set of non-nesting parking functions in terms of labelled lattice paths. The map $\zeta$ can then be viewed as a map between these combinatorial objects. Our work entails new bijections between (square) lattice paths and ballot paths.


2015 ◽  
Vol 19 (4) ◽  
pp. 693-703 ◽  
Author(s):  
A. Garsia ◽  
J. Haglund

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience We generalize previous definitions of Tesler matrices to allow negative matrix entries and non-positive hook sums. Our main result is an algebraic interpretation of a certain weighted sum over these matrices. Our interpretation uses <i>virtual Hilbert series</i>, a new class of symmetric function specializations which are defined by their values on (modified) Macdonald polynomials. As a result of this interpretation, we obtain a Tesler matrix expression for the Hall inner product $\langle \Delta_f e_n, p_{1^{n}}\rangle$, where $\Delta_f$ is a symmetric function operator from the theory of diagonal harmonics. We use our Tesler matrix expression, along with various facts about Tesler matrices, to provide simple formulas for $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ and $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ involving $q; t$-binomial coefficients and ordered set partitions, respectively. Nous généralisons les définitions précédentes de matrices Tesler pour permettre les entrées de la matrice négatives et des montants crochet non-positifs. Notre principal résultat est une interprétation algébrique d’une certaine somme pondérée sur ces matrices. Notre interprétation utilise <i>série de Hilbert virtuel</i>, une nouvelle classe de spécialisations fonctionnelles symétriques qui sont définies par leurs valeurs sur les polynômes de Macdonald (modifiées). À la suite de cette interprétation, on obtient une expression de la matrice Tesler pour la salle intérieure produit $\langle \Delta_f e_n, p_{1^{n}}\rangle$, où $\Delta_f$ est un opérateur de fonction symétrique de la théorie harmonique de diagonale. Nous utilisons notre expression de la matrice Tesler, ainsi que divers faits sur des matrices Tesler, de fournir des formules simples pour $\langle \Delta_{e_1} e_n, p_{1^{n}}\rangle$ et $\langle \Delta_{e_k} e_n, p_{1^{n}}\rangle \mid_{t=0}$ impliquant $q; t$-coefficients binomial et ensemble ordonné partitions, respectivement.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Héctor Blandin

International audience This work enrols the research line of M. Haiman on the Operator Theorem (the old operator conjecture). This theorem states that the smallest $\mathfrak{S}_n$-module closed under taking partial derivatives and closed under the action of polarization operators that contains the Vandermonde determinant is the space of diagonal harmonics polynomials. We start generalizing the context of this theorem to the context of polynomials in $\ell$ sets of $n$ variables $x_{ij}$ with $1\le i \le \ell$ and $1 \le j \le n$. Given a $\mathfrak{S}_n$-stable family of homogeneous polynomials in the variables $x_{ij}$ the smallest vector space closed under taking partial derivatives and closed under the action of polarization operators that contains $F$ is the polarization module generated by the family $F$. These polarization modules are all representation of the direct product $\mathfrak{S}_n \times GL_\ell(\mathbb{C})$. In order to study the decomposition into irreducible submodules, we compute the graded Frobenius characteristic of these modules. For several cases of $\mathfrak{S}_n$-stable families of homogeneous polynomials in n variables, for every $n \ge 1$, we show general formulas for this graded characteristic in a global manner, independent of the value of $\ell$. Ce travail s'inscrit dans la lignée de recherche des travaux de M. Haiman sur le théorème de l'opérateur (ex-conjecture de l'opérateur). Ce théorème affirme que le plus petit $\mathfrak{S}_n$-module clos par dérivation partielle et clos par l'action des opérateurs de polarisation qui contient le déterminant de Vandermonde est l'espace des polynômes harmoniques diagonaux. On commence par généraliser le contexte du théorème de l'opérateur au contexte de polynômes à ensembles de $n$ variables $x_{ij}$ avec $1\le i \le \ell$ et $1 \le j \le n$. Étant donnée une famille $\mathfrak{S}_n$-stable $F$ des polynômes homogènes en les variables $x_{ij}$, le plus petit espace vectoriel $\mathcal{M}_F$ clos par dérivation partielle et clos par léaction des opérateurs de polarisation contenant $F$ est le module de polarisation engendré par la famille $F$. Les modules $\mathcal{M}_F$ sont tous des représentations du produit direct $\mathfrak{S}_n \times GL_\ell(\mathbb{C})$. Dans le but d'étudier la décomposition en sous-modules irréductibles on calcule la caractéristique de Frobenius graduée de ces modules. Pour plusieurs cas de familles homogènes $\mathfrak{S}_n$-stables constituées des polynômes homogènes à $n$ variables, pour tout $n \ge 1$, on démontre des formules générales pour cette caractéristique graduée de façon globale, indépendante de la valeur de $\ell$.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jean-Christophe Aval ◽  
Michele D'Adderio ◽  
Mark Dukes ◽  
Angela Hicks ◽  
Yvan Le Borgne

International audience We study the statistics $\mathsf{area}$, $\mathsf{bounce}$ and $\mathsf{dinv}$ associated to polyominoes in a rectangular box $m$ times $n$. We show that the bi-statistics ($\mathsf{area}$,$\mathsf{bounce}$) and ($\mathsf{area}$,$\mathsf{dinv}$) give rise to the same $q,t-$analogue of Narayana numbers, which was introduced by two of these authors in a recent paper. We prove the main conjectures of that same work, i.e. the symmetries in $q$ and $t$, and in $m$ and $n$ of these polynomials, by providing a symmetric functions interpretation which relates them to the famous diagonal harmonics.


2013 ◽  
Vol 4 (2) ◽  
pp. 157-190 ◽  
Author(s):  
Drew Armstrong

2012 ◽  
Vol 64 (4) ◽  
pp. 822-844 ◽  
Author(s):  
J. Haglund ◽  
J. Morse ◽  
M. Zabrocki

Abstract We introduce a q, t-enumeration of Dyck paths that are forced to touch the main diagonal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of the Macdonald theory ∇ operator applied to a Hall–Littlewood polynomial. Our conjecture refines several earlier conjectures concerning the space of diagonal harmonics including the “shuffle conjecture” (Duke J. Math. 126 (2005), pp. 195 − 232) for ∇ en[X]. We bring to light that certain generalized Hall–Littlewood polynomials indexed by compositions are the building blocks for the algebraic combinatorial theory of q, t-Catalan sequences, and we prove a number of identities involving these functions.


Sign in / Sign up

Export Citation Format

Share Document