On the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector

2016 ◽  
Vol 23 (3) ◽  
pp. 387-391
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that the difference between a Vitali–Bernstein selector and a partial Vitali–Bernstein selector can be of Lebesgue measure zero and of first Baire category. This result gives an answer to a question posed by G. Lazou.

1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2008 ◽  
Vol 51 (2) ◽  
pp. 337-362 ◽  
Author(s):  
Torben Fattler ◽  
Martin Grothaus

AbstractWe give a Dirichlet form approach for the construction and analysis of elliptic diffusions in $\bar{\varOmega}\subset\mathbb{R}^n$ with reflecting boundary condition. The problem is formulated in an $L^2$-setting with respect to a reference measure $\mu$ on $\bar{\varOmega}$ having an integrable, $\mathrm{d} x$-almost everywhere (a.e.) positive density $\varrho$ with respect to the Lebesgue measure. The symmetric Dirichlet forms $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ we consider are the closure of the symmetric bilinear forms\begin{gather*} \mathcal{E}^{\varrho,a}(f,g)=\sum_{i,j=1}^n\int_{\varOmega}\partial_ifa_{ij} \partial_jg\,\mathrm{d}\mu,\quad f,g\in\mathcal{D}, \\ \mathcal{D}=\{f\in C(\bar{\varOmega})\mid f\in W^{1,1}_{\mathrm{loc}}(\varOmega),\ \mathcal{E}^{\varrho,a}(f,f)\lt\infty\}, \end{gather*}in $L^2(\bar{\varOmega},\mu)$, where $a$ is a symmetric, elliptic, $n\times n$-matrix-valued measurable function on $\bar{\varOmega}$. Assuming that $\varOmega$ is an open, relatively compact set with boundary $\partial\varOmega$ of Lebesgue measure zero and that $\varrho$ satisfies the Hamza condition, we can show that $(\mathcal{E}^{\varrho,a},D(\mathcal{E}^{\varrho,a}))$ is a local, quasi-regular Dirichlet form. Hence, it has an associated self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and diffusion process $\bm{M}^{\varrho,a}$ (i.e. an associated strong Markov process with continuous sample paths). Furthermore, since $1\in D(\mathcal{E}^{\varrho,a})$ (due to the Neumann boundary condition) and $\mathcal{E}^{\varrho,a}(1,1)=0$, we obtain a conservative process $\bm{M}^{\varrho,a}$ (i.e. $\bm{M}^{\varrho,a}$ has infinite lifetime). Additionally, assuming that $\sqrt{\varrho}\in W^{1,2}(\varOmega)\cap C(\bar{\varOmega})$ or that $\varrho$ is bounded, $\varOmega$ is convex and $\{\varrho=0\}$ has codimension at least 2, we can show that the set $\{\varrho=0\}$ has $\mathcal{E}^{\varrho,a}$-capacity zero. Therefore, in this case we can even construct an associated conservative diffusion process in $\{\varrho>0\}$. This is essential for our application to continuous $N$-particle systems with singular interactions. Note that for the construction of the self-adjoint generator $(L^{\varrho,a},D(L^{\varrho,a}))$ and the Markov process $\bm{M}^{\varrho,a}$ we do not need to assume any differentiability condition on $\varrho$ and $a$. We obtain the following explicit representation of the generator for $\sqrt{\varrho}\in W^{1,2}(\varOmega)$ and $a\in W^{1,\infty}(\varOmega)$:$$ L^{\varrho,a}=\sum_{i,j=1}^n\partial_i(a_{ij}\partial_j)+\partial_i(\log\varrho)a_{ij}\partial_j. $$Note that the drift term can be singular, because we allow $\varrho$ to be zero on a set of Lebesgue measure zero. Our assumptions in this paper even allow a drift that is not integrable with respect to the Lebesgue measure.


Author(s):  
Mareike Wolff

AbstractLet $$g(z)=\int _0^zp(t)\exp (q(t))\,dt+c$$ g ( z ) = ∫ 0 z p ( t ) exp ( q ( t ) ) d t + c where p, q are polynomials and $$c\in {\mathbb {C}}$$ c ∈ C , and let f be the function from Newton’s method for g. We show that under suitable assumptions on the zeros of $$g''$$ g ′ ′ the Julia set of f has Lebesgue measure zero. Together with a theorem by Bergweiler, our result implies that $$f^n(z)$$ f n ( z ) converges to zeros of g almost everywhere in $${\mathbb {C}}$$ C if this is the case for each zero of $$g''$$ g ′ ′ that is not a zero of g or $$g'$$ g ′ . In order to prove our result, we establish general conditions ensuring that Julia sets have Lebesgue measure zero.


1972 ◽  
Vol 24 (5) ◽  
pp. 957-966 ◽  
Author(s):  
G. J. Butler ◽  
F. B. Richards

Let 1 be a subdivision of [0, 1], and let denote the class of functions whose restriction to each sub-interval is a polynomial of degree at most k. Gaier [1] has shown that for uniform subdivisions △n (that is, subdivisions for which if and only if f is a polynomial of degree at most k. Here, and subsequently, denotes the usual norm in Lp[0, 1], 1 ≦ p ≦ ∞, and we should emphasize that functions differing only on a set of Lebesgue measure zero are identified.


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


2016 ◽  
Vol 49 (2) ◽  
Author(s):  
E. Łazarow ◽  
M. Turowska

AbstractIn 1972, S. Valenti introduced the definition of k-pseudo symmetric derivative and has shown that the set of all points of a continuous function, at which there exists a finite k-pseudo symmetric derivative but the finite ordinary derivative does not exist, is of Lebesgue measure zero. In 1993, L. Zajícek has shown that for a continuous function f, the set of all points, at which f is symmetrically differentiable but no differentiable, is σ-(1 - ε) symmetrically porous for every ε > 0. The question arises: can we transferred the Zajícek’s result to the case of the k-pseudo symmetric derivative?In this paper, we shall show that for each 0 < ε < 1 the set of all points of a continuous function, at which there exists a finite k-pseudo symmetric derivative but the finite ordinary derivative does not exist, is σ-(1 - ε)-porous.


1986 ◽  
Vol 51 (3) ◽  
pp. 560-569 ◽  
Author(s):  
Jacek Cichoń ◽  
Janusz Pawlikowski

AbstractLet be any proper ideal of subsets of the real line R which contains all finite subsets of R. We define an ideal * ∣ as follows: X ∈ * ∣ if there exists a Borel set B ⊂ R × R such that X ⊂ B and for any x ∈ R we have {y ∈ R: 〈x, y〉 ∈ B} ∈ . We show that there exists a family ⊂ * ∣ of power ω1 such that ⋃ ∉ * ∣ .In the last section we investigate properties of ideals of Lebesgue measure zero sets and meager sets in Cohen extensions of models of set theory.


Sign in / Sign up

Export Citation Format

Share Document