Anti-inflammatory activity of emu oil-based nanofibrous scaffold through downregulation of IL-1, IL-6, and TNF-α pro-inflammatory cytokines

Author(s):  
Vahid Vahedian ◽  
Amirhooman Asadi ◽  
Parisa Esmaeili ◽  
Shahbaz Zamani ◽  
Reza Zamani ◽  
...  

AbstractBackgroundInflammation is one of the most important responses of the body against infection or disease, and it protects tissues from injury; however, it causes redness, swelling, pain, fever and loss of function. The aim of this present study was to evaluate the anti-inflammatory activity of emu oil (Eu) formulated nanofibrous scaffold in HFFF2 fibroblast cells.Materials and methodsEu was formulated successfully in nanofibers through the electrospinning method. Besides, the morphological and structural properties of Eu nanofibres were evaluated using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) was performed to evaluate the HFFF2 fibroblast cells’ viability. Also, real-time polymerase chain reaction (PCR) was used to evaluate the anti-inflammatory signaling pathway in treated HFFF2 cells with Eu nanofiber.ResultsOur study showed that the Eu nanofiber increased the viability of fibroblast HFFF2 cells (p < 0.05). Also, the expression of interleukin1 (IL1), IL6 and tumor necrosis factor- alpha (TNF-α) pro-inflammatory cytokines genes were significantly decreased in treated HFFF2 cells with Eu nanofiber (p < 0.05).ConclusionsIn conclusion, Eu nanofiber scaffold potentially can reduce the inflammation process through downregulation of IL-1, IL-6 and TNF-α cytokines.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9533 ◽  
Author(s):  
Zhiyu Wang ◽  
Yanfei Wang ◽  
Prachi Vilekar ◽  
Seung-Pil Yang ◽  
Mayuri Gupta ◽  
...  

The novel coronavirus SARS-CoV-2 has become a global health concern. The morbidity and mortality of the potentially lethal infection caused by this virus arise from the initial viral infection and the subsequent host inflammatory response. The latter may lead to excessive release of pro-inflammatory cytokines, IL-6 and IL-8, as well as TNF-α ultimately culminating in hypercytokinemia (“cytokine storm”). To address this immuno-inflammatory pathogenesis, multiple clinical trials have been proposed to evaluate anti-inflammatory biologic therapies targeting specific cytokines. However, despite the obvious clinical utility of such biologics, their specific applicability to COVID-19 has multiple drawbacks, including they target only one of the multiple cytokines involved in COVID-19’s immunopathy. Therefore, we set out to identify a small molecule with broad-spectrum anti-inflammatory mechanism of action targeting multiple cytokines of innate immunity. In this study, a library of small molecules endogenous to the human body was assembled, subjected to in silico molecular docking simulations and a focused in vitro screen to identify anti-pro-inflammatory activity via interleukin inhibition. This has enabled us to identify the loop diuretic furosemide as a candidate molecule. To pre-clinically evaluate furosemide as a putative COVID-19 therapeutic, we studied its anti-inflammatory activity on RAW264.7, THP-1 and SIM-A9 cell lines stimulated by lipopolysaccharide (LPS). Upon treatment with furosemide, LPS-induced production of pro-inflammatory cytokines was reduced, indicating that furosemide suppresses the M1 polarization, including IL-6 and TNF-α release. In addition, we found that furosemide promotes the production of anti-inflammatory cytokine products (IL-1RA, arginase), indicating M2 polarization. Accordingly, we conclude that furosemide is a reasonably potent inhibitor of IL-6 and TNF-α that is also safe, inexpensive and well-studied. Our pre-clinical data suggest that it may be a candidate for repurposing as an inhaled therapy against COVID-19.


2020 ◽  
Author(s):  
Jia He ◽  
Renyikun Yuan ◽  
Xiaolan Cui ◽  
Yushun Cui ◽  
Shan Han ◽  
...  

Abstract Background: Pneumonia refers to the inflammation of the terminal airway, alveoli and pulmonary interstitium, which can be caused by pathogenic microorganisms, physical and chemical factors, immune damage, and drugs. Anemoside B4, the major ingredient of Pulsatilla chinensis (Bunge) Regel, exhibited anti-inflammatory activity. However, the therapeutic effect of anemoside B4 on pneumonia has not been unraveled. This study aims to investigate that anemoside B4 attenuates the inflammatory responses in Klebsiella pneumonia (KP)- and influenza virus FM1 (FM1)-induced pneumonia mice model.Methods: The network pharmacology and molecular docking assays were employed to predict the targets of anemoside B4’s treatment of pneumonia. Two models (bacterial KP-infected mice and virus FM1-infected mice) were employed in our study. BALB/c mice were divided into six groups: control, model group (KP- induced pneumonia or FM1-induced pneumonia), anemoside B4 (B4)-treated group (2.5, 5, 10 mg/kg), and positive drug group (Ribavirin or Ceftriaxone Sodium Injection). Blood samples were collected for hematology analysis. The effects of B4 on inflammation-associated mediators were investigated by Enzyme-linked immunosorbent assay (ELISA) and hematoxylin and eosin staining (HE) staining. Proteins expression was quantified by western blotting.Results: The network results indicated that many pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) participated in anemoside B4’s anti-inflammatory activity. The counts of neutrophil (NEU) and white blood cell (WBC), the level of myeloperoxidase (MPO), and the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 increased by KP or FM1 infection, which were reversed by anemoside B4. In addition, anemoside B4 significantly suppressed the FM1-induced expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and myeloid differentiation protein-2 (MD-2), which were further validated by molecular docking data that anemoside B4 bound to bioactive sites of TLR4. Therefore, anemoside B4 exhibited a significant therapeutic effect on pneumonia via the TLR4/MyD88 pathway.Conclusion: Our findings demonstrated that anemoside B4 attenuates pneumonia via the TLR4/Myd88 signaling pathway, suggesting that anemoside B4 is a promising therapeutic candidate for bacterial-infected or viral-infected pneumonia.


Author(s):  
Jingshuang Li ◽  
Hui Wang ◽  
Lili Zhang ◽  
Ni An ◽  
Wan Ni ◽  
...  

Abstract. Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several Capsicum species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.


Author(s):  
Asif Choudhury ◽  
Deepak Kumar Jha ◽  
U. Rajashekhar

Background: Natural products are a valuable resource of novel bioactive metabolites and these products exist in which the anti-inflammatory activity. The present investigation studies the in vivo and in vitro anti-inflammatory activity of methanolic extract of Ficus hispida in rat’s model.Methods: Plant material was extracted with methanol in a Soxhlet extraction apparatus. Indomethacin was used as a standard drug here, which is a known potent inhibitor of PG synthesis. The carrageenin and histamine induced paw oedema were selected to represent models of acute inflammations. The test compounds and standard drugs were administered orally. After 60 minutes paw oedema was induced by giving 0.1 ml of 1% Carrageenan and 0.1 % histamine by sub-plantar administration. Paw volume-Plethysmometer by mercury displacement method, before and after 1 hr to 4 hours of carrageenan and histamine administration. Performed MTT-based cytotoxicity assay of the Ficus hispida on the RAW264.7 cell line to determine the IC50 and calculate the pro-inflammatory cytokines viz, IL-6, IL-1β and TNF-α and compared to the LPS control.Results: The result obtained from the in-vivo study shows that the Ficus hispida has significant anti- inflammatory activity in a dose dependent manner. This effect is similar to that produced by NSAIDS such as Indomethacin. The concentrations of IL-6, IL-1β and TNF-α, secreted by the cells after challenging with bacterial LPS (2 µg/ml) and subsequent treatment with 50 µg Ficus hispida has been found to reduce the production of all the three pro-inflammatory cytokines viz, IL-6, IL-1β and TNF-α as compared to the LPS control. The activity, in fact, is comparable to the standard NSAID Indomethacin.Conclusions: All these findings and phytoconstituents present in the extract could be the possible chemicals involved in the prevention of inflammations.


2020 ◽  
Author(s):  
Jia He ◽  
Renyikun Yuan ◽  
Xiaolan Cui ◽  
Yushun Cui ◽  
Shan Han ◽  
...  

Abstract Background Pneumonia refers to the inflammation of the terminal airway, alveoli and pulmonary interstitium, which can be caused by pathogenic microorganisms, physical and chemical factors, immune damage, and drugs. Anemoside B4, the major ingredient of Pulsatilla chinensis (Bunge) Regel, exhibited anti-inflammatory activity. However, the therapeutic effect of anemoside B4 on pneumonia has not been unraveled. This study aims to investigate that anemoside B4 attenuates the inflammatory responses in Klebsiella pneumonia (KP)- and influenza virus FM1 (FM1)-induced pneumonia mice model.Methods The network pharmacology and molecular docking assays were employed to predict the targets of anemoside B4’s treatment of pneumonia. Two models (bacterial KP-infected mice and virus FM1-infected mice) were employed in our study. BALB/c mice were divided into six groups: control, model group (KP- induced pneumonia or FM1-induced pneumonia), anemoside B4 (B4)-treated group (2.5, 5, 10 mg/kg), and positive drug group (Ribavirin or Ceftriaxone Sodium Injection). Blood samples were collected for hematology analysis. The effects of B4 on inflammation-associated mediators were investigated by Enzyme-linked immunosorbent assay (ELISA). Proteins expression was quantified by western blotting.Results The network results indicated that many pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) participated in anemoside B4’s anti-inflammatory activity. The counts of neutrophil (NEU) and white blood cell (WBC), the level of myeloperoxidase (MPO), and the release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 increased by KP or FM1 infection, which were reversed by anemoside B4. In addition, anemoside B4 significantly suppressed the FM1-induced expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and myeloid differentiation protein-2 (MD-2), which were further validated by molecular docking data that anemoside B4 bound to bioactive sites of TLR4. Therefore, anemoside B4 exhibited a significant therapeutic effect on pneumonia via the TLR4/MyD88 pathway.Conclusion Our findings demonstrated that anemoside B4 attenuates pneumonia via the TLR4/Myd88 signaling pathway, suggesting that anemoside B4 is a promising therapeutic candidate for bacterial-infected or viral-infected pneumonia.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 653
Author(s):  
Seth O. Asiedu ◽  
Samuel K. Kwofie ◽  
Emmanuel Broni ◽  
Michael D. Wilson

Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.


Author(s):  
Adryan Fristiohady ◽  
Muhammad Hajrul Malaka ◽  
Andi Rizqa Wahyuni Safitri ◽  
Dewo Diha ◽  
Saripuddin Saripuddin ◽  
...  

Inflammation is the host's protective response to any stimulus that harms the body. Excessive inflammatory process causes tissue damage. Therefore, an anti-inflammatory agent is needed. The use of natural ingredients, especially sea sponges, is an option to reduce the side effects of anti-inflammatory agents. This utilization is related to the discovery of new agents. So, we tested the effect of the ethanol extract of Petrosia sp. as an anti-inflammatory agent. Animal induced with 1% carrageenan and left for 1 hour. After that the animals were divided into 6 groups (n = 4) and given oral treatment, namely: Group I (normal group); Group II (negative group); Group III (ethanol extract of Petrosia sp. Concentration of 0.05mg/ml); Group IV (ethanol extract of Petrosia sp. Concentration 0.1mg/ml); Group V (ethanol extract of Petrosia sp. Concentration 0.2mg/ml); and Group VI (positive group, Diclofenac Sodium). After 1 hour, the animals were measured for edema volume and plasma TNF-α levels. Based on the research conducted, the ethanol extract of Petrosia sp. decreased edema volume and plasma TNF-α levels in inflammatory mice. The concentration of 0.2mg/mL had a significant effect on the negative control used (p <0.05). On the other hand, Petrosia sp. indicates the presence of alkaloids, flavonoids, and steroids. They may play an important role in the anti-inflammatory process. Thus, it can be concluded that the ethanol extract of Petrosia sp. has anti-inflammatory activity.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Dan Li ◽  
Chenyu Li ◽  
Yan Xu

Abstract Background and Aims Acute kidney injury (AKI), commonly appeared in cardiac arrest, surgery and kidney transplantation which involved in ischemia-reperfusion (IR) injury of kidney. However, the mechanisms underlying inflammatory response in IR AKI is still unclear. Method Public dataset showed kruppel-like factor 6 (KLF6) was significantly highly expressed (P&lt;0.05) in AKI, implies KLF6 might be associated with AKI. To evaluate the mechanism of KLF6 on IR AKI, 30 rats were randomly divided into sham and IR group, and were sacrificed at 0 h, 3 h, 6 h, 12 h or 24 h after IR. Results The results showed KLF6 expression was peaking at 6 h after IR, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α were increased both in serum and kidney tissues after IR, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed KLF6 knock-down reduced the pro-inflammatory cytokines expression and increased the anti-inflammatory cytokines expression. Conclusion These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) targeting KLF6 expression may offer novel strategies to protect kidneys from IR AKI Figure KLF6, AKI, Control Inflammation


2020 ◽  
Vol 48 (08) ◽  
pp. 1875-1893
Author(s):  
Da-Sol Kim ◽  
Kyoung-Eun Park ◽  
Yeon-Ju Kwak ◽  
Moon-Kyoung Bae ◽  
Soo-Kyung Bae ◽  
...  

Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.


2020 ◽  
pp. 088506662091298
Author(s):  
Suresh Kumar Angurana ◽  
Arun Bansal ◽  
Jayashree Muralidharan ◽  
Ritu Aggarwal ◽  
Sunit Singhi

Objective: To study the baseline cytokine levels and their relation with the severity of illness and mortality in critically ill children with severe sepsis. Design: Subgroup analysis of a randomized, double-blind, placebo-controlled trial. Setting: Pediatric intensive care unit of a tertiary level teaching hospital in India. Patients: Fifty children with severe sepsis aged 3 months to 12 years. Material and Methods: Blood was collected at admission for estimation of pro-inflammatory (interleukin 6 [IL-6], IL-12p70, IL-17, and tumor necrotic factor α [TNF-α]) and anti-inflammatory (IL-10 and transforming growth factor β1 [TGF-β1]) cytokines. Primary Outcome: To find out correlation between cytokine levels and severity of illness scores (Pediatric Risk of Mortality [PRISM] III score, Sequential Organ Failure Assessment [SOFA], and Vasoactive-Inotropic Score [VIS]). Secondary Outcomes: To compare cytokine levels among survivors and nonsurvivors. Results: Baseline pro-inflammatory cytokine levels (median [interquartile range]) were IL-6: 189 (35-285) pg/mL, IL-12p: 48 (28-98) pg/mL, IL-17: 240 (133-345) pg/mL, and TNF-α: 296 (198-430) pg/mL; anti-inflammatory cytokine levels were IL-10: 185 (62-395) pg/mL and TGF-β1: 204 (92-290) ng/mL. Pro-inflammatory cytokines showed positive correlation with PRISM III score: IL-6 (Spearman correlation coefficient, ρ = 0.273, P = .06), IL-12 (ρ = 0.367, P = .01), IL-17 (ρ = 0.197, P = .17), and TNF-α (ρ = 0.284, P = .05), and anti-inflammatory cytokines showed negative correlation: IL-10 (ρ = −0.257, P = .09) and TGF-β (ρ = −0.238, P = .11). Both SOFA and VIS also showed weak positive correlation with IL-12 (ρ = 0.32, P = .03 and ρ = 0.31, P = .03, respectively). Among nonsurvivors (n = 5), the levels of all the measured pro-inflammatory cytokines were significantly higher as compared to survivors, IL-6: 359 (251-499) pg/mL versus 157 (97-223) pg/mL, P < .0001, IL-12p70: 167 (133-196) pg/mL versus 66 (30-100) pg/mL, P < .0001, IL-17: 400 (333-563) pg/mL versus 237 (122-318) pg/mL, P = .009, and TNF-α: 409 (355-503) pg/mL versus 330 (198-415) pg/mL, P = .002, respectively. Conclusion: In critically ill children with severe sepsis, pro-inflammatory cytokines (especially IL-12p70) showed a weak positive correlation with severity of illness and were significantly higher among nonsurvivors.


Sign in / Sign up

Export Citation Format

Share Document