Numerical Solutions Based on a Collocation Method Combined with Euler Polynomials for Linear Fractional Differential Equations with Delay

Author(s):  
Ali Konuralp ◽  
Sercan Öner

AbstractIn this study, a method combined with both Euler polynomials and the collocation method is proposed for solving linear fractional differential equations with delay. The proposed method yields an approximate series solution expressed in the truncated series form in which terms are constituted of unknown coefficients that are to be determined according to Euler polynomials. The matrix method developed for the linear fractional differential equations is improved to the case of having delay terms. Furthermore, while putting the effect of conditions into the algebraic system written in the augmented form in which the coefficients of Euler polynomials are unknowns, the condition matrix scans the rows one by one. Thus, by using our program written in Mathematica there can be obtained more than one semi-analytic solutions that approach to exact solutions. Some numerical examples are given to demonstrate the efficiency of the proposed method.

Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Hossein Jafari ◽  
Chaudry Khalique ◽  
Mohammad Ramezani ◽  
Haleh Tajadodi

AbstractIn this paper, we present fractional B-spline collocation method for the numerical solution of fractional differential equations. We consider this method for solving linear fractional differential equations which involve Caputo-type fractional derivatives. The numerical results demonstrate that the method is efficient and quite accurate and it requires relatively less computational work. For this reason one can conclude that this method has advantage on other methods and hence demonstrates the importance of this work.


2017 ◽  
Vol 12 (5) ◽  
Author(s):  
Shahrokh Esmaeili

Since the solutions of the fractional differential equations (FDEs) have unbounded derivatives at zero, their numerical solutions by piecewise polynomial collocation method on uniform meshes will lead to poor convergence rates. This paper presents a piecewise nonpolynomial collocation method for solving such equations reflecting the singularity of the exact solution. The entire domain is divided into several small subdomains, and the nonpolynomial pieces are constructed using a block-by-block scheme on each subdomain. The method is applied to solve linear and nonlinear fractional differential equations. Numerical examples are given and discussed to illustrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document