scholarly journals Roles of African swine fever virus structural proteins in viral infection

2017 ◽  
Vol 61 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Ning Jia ◽  
Yunwen Ou ◽  
Zygmunt Pejsak ◽  
Yongguang Zhang ◽  
Jie Zhang

AbstractAfrican swine fever virus (ASFV) is a large, double-stranded DNA virus and the sole member of the Asfarviridae family. ASFV infects domestic pigs, wild boars, warthogs, and bush pigs, as well as soft ticks (Ornithodoros erraticus), which likely act as a vector. The major target is swine monocyte-macrophage cells. The virus can cause high fever, haemorrhagic lesions, cyanosis, anorexia, and even fatalities in domestic pigs. Currently, there is no vaccine and effective disease control strategies against its spread are culling infected pigs and maintaining high biosecurity standards. African swine fever (ASF) spread to Europe from Africa in the middle of the 20th century, and later also to South America and the Caribbean. Since then, ASF has spread more widely and thus is still a great challenge for swine breeding. The genome of ASFV ranges in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs). The ASFV genome encodes 150 to 200 proteins, around 50 of them structural. The roles of virus structural proteins in viral infection have been described. These proteins, such as pp220, pp62, p72, p54, p30, and CD2v, serve as the major component of virus particles and have roles in attachment, entry, and replication. All studies on ASFV proteins lay a good foundation upon which to clarify the infection mechanism and develop vaccines and diagnosis methods. In this paper, the roles of ASFV structural proteins in viral infection are reviewed.

2021 ◽  
Vol 102 (8) ◽  
Author(s):  
Gareth L. Shimmon ◽  
Joshua Y. K. Hui ◽  
Thomas E. Wileman ◽  
Christopher L. Netherton

African swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines. Autophagy is an important cellular pathway that is involved in cellular homeostasis, innate and adaptive immunity and therefore is manipulated by a number of different viruses. Autophagy is regulated by a complex protein cascade and here we show that African swine fever virus can block formation of autophagosomes, a critical functional step of the autophagy pathway through at least two different mechanisms. Interestingly this does not require the A179L gene that has been shown to interact with Beclin-1, an important autophagy regulator.


1986 ◽  
Vol 58 (2) ◽  
pp. 377-384 ◽  
Author(s):  
J L Carrascosa ◽  
P González ◽  
A L Carrascosa ◽  
B Garciá-Barreno ◽  
L Enjuanes ◽  
...  

2004 ◽  
Vol 32 (2) ◽  
pp. 204-208 ◽  
Author(s):  
D. Prangishvili ◽  
R.A. Garrett

The remarkable diversity of the morphologies of viruses found in terrestrial hydrothermal environments with temperatures >80°C is unprecedented for aquatic ecosystems. The best-studied viruses from these habitats have been assigned to novel viral families: Fuselloviridae, Lipothrixviridae and Rudiviridae. They all have double-stranded DNA genomes and infect hyperthermophilic crenarchaea of the orders Sulfolobales and Thermoproteales. Representatives of the different viral families share a few homologous ORFs (open reading frames). However, about 90% of all ORFs in the seven sequenced genomes show no significant matches to sequences in public databases. This suggests that these hyperthermophilic viruses have exceptional biochemical solutions for biological functions. Specific features of genome organization, as well as strategies for DNA replication, suggest that phylogenetic relationships exist between crenarchaeal rudiviruses and the large eukaryal DNA viruses: poxviruses, the African swine fever virus and Chlorella viruses. Sequence patterns at the ends of the linear genome of the lipothrixvirus AFV1 are reminiscent of the telomeric ends of linear eukaryal chromosomes and suggest that a primitive telomeric mechanism operates in this virus.


1998 ◽  
Vol 72 (4) ◽  
pp. 2881-2889 ◽  
Author(s):  
M. V. Borca ◽  
C. Carrillo ◽  
L. Zsak ◽  
W. W. Laegreid ◽  
G. F. Kutish ◽  
...  

ABSTRACT An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo,8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.


2008 ◽  
Vol 83 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Aitor G. Granja ◽  
Elena G. Sánchez ◽  
Prado Sabina ◽  
Manuel Fresno ◽  
Yolanda Revilla

ABSTRACT During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-θ completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-θ enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-θ and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen McCleary ◽  
Rebecca Strong ◽  
Ronan R. McCarthy ◽  
Jane C. Edwards ◽  
Emma L. Howes ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 820 ◽  
Author(s):  
Ayushi Rai ◽  
Sarah Pruitt ◽  
Elizabeth Ramirez-Medina ◽  
Elizabeth A. Vuono ◽  
Ediane Silva ◽  
...  

African swine fever virus (ASFV) is causing outbreaks both in domestic pigs and wild boar in Europe and Asia. In 2018, the largest pig producing country, China, reported its first outbreak of African swine fever (ASF). Since then, the disease has quickly spread to all provinces in China and to other countries in southeast Asia, and most recently to India. Outbreaks of the disease occur in Europe as far west as Poland, and one isolated outbreak has been reported in Belgium. The current outbreak strain is highly contagious and can cause a high degree of lethality in domestic pigs, leading to widespread and costly losses to the industry. Currently, detection of infectious ASFV in field clinical samples requires accessibility to primary swine macrophage cultures, which are infrequently available in most regional veterinary diagnostic laboratories. Here, we report the identification of a commercially available cell line, MA-104, as a suitable substrate for virus isolation of African swine fever virus.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Julien Andreani ◽  
Jacques Yaacoub Bou Khalil ◽  
Madhumati Sevvana ◽  
Samia Benamar ◽  
Fabrizio Di Pinto ◽  
...  

ABSTRACT African swine fever virus, a double-stranded DNA virus that infects pigs, is the only known member of the Asfarviridae family. Nevertheless, during our isolation and sequencing of the complete genome of faustovirus, followed by the description of kaumoebavirus, carried out over the past 2 years, we observed the emergence of previously unknown related viruses within this group of viruses. Here we describe the isolation of pacmanvirus, a fourth member in this group, which is capable of infecting Acanthamoeba castellanii. Pacmanvirus A23 has a linear compact genome of 395,405 bp, with a 33.62% G+C content. The pacmanvirus genome harbors 465 genes, with a high coding density. An analysis of reciprocal best hits shows that 31 genes are conserved between African swine fever virus, pacmanvirus, faustovirus, and kaumoebavirus. Moreover, the major capsid protein locus of pacmanvirus appears to be different from those of kaumoebavirus and faustovirus. Overall, comparative and genomic analyses reveal the emergence of a new group or cluster of viruses encompassing African swine fever virus, faustovirus, pacmanvirus, and kaumoebavirus. IMPORTANCE Pacmanvirus is a newly discovered icosahedral double-stranded DNA virus that was isolated from an environmental sample by amoeba coculture. We describe herein its structure and replicative cycle, along with genomic analysis and genomic comparisons with previously known viruses. This virus represents the third virus, after faustovirus and kaumoebavirus, that is most closely related to classical representatives of the Asfarviridae family. These results highlight the emergence of previously unknown double-stranded DNA viruses which delineate and extend the diversity of a group around the asfarvirus members.


Sign in / Sign up

Export Citation Format

Share Document