functional step
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 102 (8) ◽  
Author(s):  
Gareth L. Shimmon ◽  
Joshua Y. K. Hui ◽  
Thomas E. Wileman ◽  
Christopher L. Netherton

African swine fever is a devastating disease of domestic swine and wild boar caused by a large double-stranded DNA virus that encodes for more than 150 open reading frames. There is no licensed vaccine for the disease and the most promising current candidates are modified live viruses that have been attenuated by deletion of virulence factors. Like many viruses African swine fever virus significantly alters the host cell machinery to benefit its replication and viral genes that modify host pathways represent promising targets for development of gene deleted vaccines. Autophagy is an important cellular pathway that is involved in cellular homeostasis, innate and adaptive immunity and therefore is manipulated by a number of different viruses. Autophagy is regulated by a complex protein cascade and here we show that African swine fever virus can block formation of autophagosomes, a critical functional step of the autophagy pathway through at least two different mechanisms. Interestingly this does not require the A179L gene that has been shown to interact with Beclin-1, an important autophagy regulator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ananthamurthy Koteshwara ◽  
Nancy V. Philip ◽  
Jesil Mathew Aranjani ◽  
Raghu Chandrashekhar Hariharapura ◽  
Subrahmanyam Volety Mallikarjuna

AbstractA carefully designed ammonium sulfate precipitation will simplify extraction of proteins and is considered to be a gold standard among various precipitation methods. Therefore, optimization of ammonium sulfate precipitation can be an important functional step in protein purification. The presence of high amounts of ammonium sulphate precludes direct detection of many enzymatically active proteins including reducing sugar assays (e.g. Nelson-Somogyi, Reissig and 3,5-dinitrosalicylic acid methods) for assessing carbohydrases (e.g. laminarinase (β (1–3)-glucanohydrolase), cellulases and chitinases). In this study, a simple method was developed using laminarin infused agarose plate for the direct analysis of the ammonium sulphate precipitates from Streptomyces rimosus AFM-1. The developed method is simple and convenient that can give accurate results even in presence of ammonium sulfate in the crude precipitates. Laminarin is a translucent substrate requiring the use of a stain to visualize the zones of hydrolysis in a plate assay. A very low-cost and locally available fluorescent optical fabric brightener Tinopal CBS-X has been used as a stain to detect the zones of hydrolysis. We also report simple methods to prepare colloidal chitin and cell free supernatant in this manuscript.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Bjelić ◽  
Brigita Hočevar ◽  
Miha Grilc ◽  
Uroš Novak ◽  
Blaž Likozar

AbstractConventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Hima Rani Sapa

Abstract Cholesterol efflux capacity (CEC), an important functional step in reverse cholesterol transport, is the main anti-atherosclerotic function of high-density lipoprotein (HDL). Assays that improve the determination of CEC ex vivo for clinical applications are constantly explored. In the accompanying article, Horiuchi et al. (Biosci. Rep. (2019) 39(4), BSR20190213) evaluate the availability of apolipoprotein B-depleted serum for CEC assays. Using their recently developed immobilized liposome-bound gel beads (ILG) method, Horiuchi et al. demonstrate that apolipoprotein B-depleted serum obtained with poly ethylene glycol precipitation enables CEC assays to be easily and accurately introduced into laboratory medicine.


2014 ◽  
Vol 29 (9) ◽  
pp. 1056-1062 ◽  
Author(s):  
Simon Lack ◽  
Christian Barton ◽  
Roger Woledge ◽  
Markus Laupheimer ◽  
Dylan Morrissey

2014 ◽  
Vol 29 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Simon Lack ◽  
Christian Barton ◽  
Peter Malliaras ◽  
Richard Twycross-Lewis ◽  
Roger Woledge ◽  
...  

Author(s):  
Loi¨c Tching ◽  
Georges Dumont ◽  
Je´roˆme Perret

In the context of virtual reality (VR) and of computed aided design (CAD), haptic simulations are used to perform assembly tasks between 3D objects. To help the user to perform the assembly of CAD objects, we propose a new method of interactive assembly that uses both kinematic constraints and virtual guiding fixtures. Modelling a haptic assembly task as a combination of mechanical joints, we focus on the guidance of objects and on the activation cues of kinematic constraints within physical simulation. In this article, we first outline the difficulties related to the haptic-assembly of CAD objects in VR simulation. Introducing the virtual constraint guidance (VCG), we present a new method for haptic guidance that decomposes a task in two independent steps: a guiding step which use geometries as virtual fixtures to position objects, and a functional step that use kinematic constraints to perform the assembly task while deactivating locally the collisions between objects. We finally present a complete application of our method on a insertion task and present our experimental results concerning the usability of our method.


2005 ◽  
Vol 29 (2) ◽  
pp. 183-192 ◽  
Author(s):  
M. Rabuffetti ◽  
M. Recalcati ◽  
M. Ferrarin

The paper deals with the identification of motor strategies adopted by trans-femoral amputees to compensate for the constraints of hip motion induced by the interference of the socket with the pelvis and, particularly, with the ischial tuberosity. A group of 11 subjects with trans-femoral amputation, three of whom wore two different prostheses, giving a sample size of 14 cases, were studied by gait-analysis protocols: the present paper focuses on the pelvis – thigh kinematics at foot strike. The results showed that, at the prosthetic side, the hip is significantly less flexed and less extended, respectively, at the ipsilateral and contralateral foot strike. Moreover, the pelvis is significantly more anterior tilted at sound foot strike. The anterior step length showed a decreased sound limb anterior step in 12 out of 14 cases. The authors interpret these results as a combination of mechanical constraints and compensatory actions: the reduced prosthetic hip extension is determined by the mechanical constraint involved in the pelvis – socket interference; and the increased pelvis tilt and sound hip flexion occurring at the same time are compensating strategies, adopted by the amputees, in order to obtain a functional step length and symmetrical thigh inclinations. Those factors determine a gait pattern which is functional, only slightly slower than normal gait, and without any perceivable alterations. On the other hand, the authors show that the increased pelvis tilting necessarily overloads the lumbar tract of the spine and may be related to the frequent occurrence of low-back pain in amputee subjects, despite the positive functional gait recovery.


Sign in / Sign up

Export Citation Format

Share Document