scholarly journals Efficiency of some meteorological drought indices in different time scales, case study: wadi Louza basin (NW-Algeria)

2016 ◽  
Vol 31 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Fayçal Djellouli ◽  
Abderrazak Bouanani ◽  
Kamila Baba-Hamed

AbstractDrought is an insidious hazard of nature in many parts of the world. It originates from persistent shortage of precipitation over a specific region for a specific period of time and has a conceptual and operational definition. Drought impact on some activity, group, or environmental sector depends on the extent of water shortage and ground conditions. Algeria and especially the western region has experienced several periods of drought over the last century, since 1975 to the present day. The most recent drought in 1981, 1989, 1990, 1992, 1994 and 1999 was characterized by its intensity and spatial extent. Drought is identified using various drought indices (meteorological, hydrological and agricultural). In this research, we focus on the meteorological drought, to assess the reliability of these indices under changing climatic conditions. Data was recorded for the period of 1980–2009 at wadi Louza catchment (NW-Algeria). For describing and monitoring drought severity periods, we calculated the correlation between both meteorological drought indices: Standardised Precipitation Index (SPI) and Effective Drought Index (EDI). The results show that the watershed of wadi Louza has experienced a severe meteorological drought. The correlation between meteorological drought indices was good for all time steps and the best was found for 9-month time step. The obtained results may provide some scientific support for fighting against droughts.

2021 ◽  
Author(s):  
L. Vergni ◽  
F. Todisco ◽  
B. Di Lena

AbstractIn the literature, numerous papers report comparative analyses of drought indices. In these types of studies, the similarity between drought indices is usually evaluated using the Pearson correlation coefficient, r, calculated between corresponding severity time series. However, it is well known that the correlation does not describe the strength of agreement between two variables. Two drought indices can exhibit a high degree of correlation but can, at the same time, disagree substantially, for example, if one index is consistently higher than the other. From an operational point of view, two indices can be considered in agreement when they indicate the same severity category for a given period (e.g. moderate drought). In this work, we compared six meteorological drought indices based on both correlation analysis and Cohen's Kappa test. This test is typically used in medical or social sciences to obtain a quantitative assessment of the degree of agreement between different methods or analysts. The indices considered are five timescale-dependent indices, i.e. the Percent of Normal Index, the Deciles Index, the Percentile Index, the Rainfall Anomaly Index, and the Standardised Precipitation Index, computed at the 1-, 3-, and 6-month timescales, and the Effective Drought Index, a relatively new index, which has a self-defined timescale. The indices were calculated for 15 stations in the Abruzzo region (central Italy) during 1951–2018. We found that the strength of agreement depends on both the criteria of drought severity classification and the different indices' calculation method. The Cohen's Kappa test indicates a prevailing moderate or fair agreement among the indices considered, despite the generally very high correlation between the corresponding severity times series. The results demonstrate that the Cohen's Kappa test is more effective than the correlation analysis in discriminating the actual strength of agreement/disagreement between drought indices.


Author(s):  
A. T. Lennard ◽  
N. Macdonald ◽  
J. Hooke

Abstract. Droughts are a reoccurring feature of the UK climate; recent drought events (2004–2006 and 2010–2012) have highlighted the UK’s continued vulnerability to this hazard. There is a need for further understanding of extreme events, particularly from a water resource perspective. A number of drought indices are available, which can help to improve our understanding of drought characteristics such as frequency, severity and duration. However, at present little of this is applied to water resource management in the water supply sector. Improved understanding of drought characteristics using indices can inform water resource management plans and enhance future drought resilience. This study applies the standardised precipitation index (SPI) to a series of rainfall records (1962–2012) across the water supply region of a single utility provider. Key droughts within this period are analysed to develop an understanding of the meteorological characteristics that lead to, exist during and terminate drought events. The results of this analysis highlight how drought severity and duration can vary across a small-scale water supply region, indicating that the spatial coherence of drought events cannot be assumed.


2020 ◽  
Vol 21 (7) ◽  
pp. 1513-1530 ◽  
Author(s):  
Lingcheng Li ◽  
Dunxian She ◽  
Hui Zheng ◽  
Peirong Lin ◽  
Zong-Liang Yang

AbstractThis study elucidates drought characteristics in China during 1980–2015 using two commonly used meteorological drought indices: standardized precipitation index (SPI) and standardized precipitation–evapotranspiration index (SPEI). The results show that SPEI characterizes an overall increase in drought severity, area, and frequency during 1998–2015 compared with those during 1980–97, mainly due to the increasing potential evapotranspiration. By contrast, SPI does not reveal this phenomenon since precipitation does not exhibit a significant change overall. We further identify individual drought events using the three-dimensional (i.e., longitude, latitude, and time) clustering algorithm and apply the severity–area–duration (SAD) method to examine the drought spatiotemporal dynamics. Compared to SPI, SPEI identifies a lower drought frequency but with larger total drought areas overall. Additionally, SPEI identifies a greater number of severe drought events but a smaller number of slight drought events than the SPI. Approximately 30% of SPI-detected drought grids are not identified as drought by SPEI, and 40% of SPEI-detected drought grids are not recognized as drought by SPI. Both indices can roughly capture the major drought events, but SPEI-detected drought events are overall more severe than SPI. From the SAD analysis, SPI tends to identify drought as more severe over small areas within 1 million km2 and short durations less than 2 months, whereas SPEI tends to delineate drought as more severe across expansive areas larger than 3 million km2 and periods longer than 3 months. Given the fact that potential evapotranspiration increases in a warming climate, this study suggests SPEI may be more suitable than SPI in monitoring droughts under climate change.


2015 ◽  
Vol 16 (3) ◽  
pp. 1397-1408 ◽  
Author(s):  
Hongshuo Wang ◽  
Jeffrey C. Rogers ◽  
Darla K. Munroe

Abstract Soil moisture shortages adversely affecting agriculture are significantly associated with meteorological drought. Because of limited soil moisture observations with which to monitor agricultural drought, characterizing soil moisture using drought indices is of great significance. The relationship between commonly used drought indices and soil moisture is examined here using Chinese surface weather data and calculated station-based drought indices. Outside of northeastern China, surface soil moisture is more affected by drought indices having shorter time scales while deep-layer soil moisture is more related on longer index time scales. Multiscalar drought indices work better than drought indices from two-layer bucket models. The standardized precipitation evapotranspiration index (SPEI) works similarly or better than the standardized precipitation index (SPI) in characterizing soil moisture at different soil layers. In most stations in China, the Z index has a higher correlation with soil moisture at 0–5 cm than the Palmer drought severity index (PDSI), which in turn has a higher correlation with soil moisture at 90–100-cm depth than the Z index. Soil bulk density and soil organic carbon density are the two main soil properties affecting the spatial variations of the soil moisture–drought indices relationship. The study may facilitate agriculture drought monitoring with commonly used drought indices calculated from weather station data.


Author(s):  
L. Sathya ◽  
R. Lalitha

Droughts are regional phenomena, which are considered as one of the major natural environmental hazards and severely affect the water resources. Climate variability may result in harmful drought periods in semiarid regions. Meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. This study compares the performance of three indices of Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI) End Palmer Drought Severity Index (PNPI) to predict long-term drought events using the Thomas-Feiring Model and historical data. For studies of areal drought extent, the 61 years (1951-2011) historical rainfall data of Trichy District were utilized to generate 58 years (2012-2070) synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results show that SPI and PNPI perform similarly with regard to drought identification and detailed analysis to determine the characteristics of long-term drought. Finally, the RAI indicated significant deviations from normalized natural processes.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1209
Author(s):  
David Romero ◽  
Eric Alfaro ◽  
Roger Orellana ◽  
Maria-Engracia Hernandez Cerda

The main climatic indices used for the determination of pre-summer drought severity were developed for temperate zones with very different climatic conditions from those found in the tropical climate zones, particularly with respect to seasonal rainfall variations. The temporal evolution of pre-summer drought leads the authors to compute the indices for each year over a defined period according to the climatic normals of each meteorological station and to consider the months inside the dry episode differently, according to the law of emptying the water reserves. As a function of this, standardized drought indices are proposed for the evaluation of the pre-summer drought in tropical zone. Two new indices were tested: one developed from precipitation and the other also considering temperature. These indices were validated by correlation with Advanced very-high-resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) time series and used to identify the most severe drought conditions in the Yucatan Peninsula. The comparison between the indices and their temporal variations highlighted the importance of temperature in the most critical events and left indications of the impact of global warming on the phenomenon.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Ashenif Melese ◽  
K. V. Suryabhagavan ◽  
M. Balakrishnan

Drought is a water related climatic natural disaster affecting wide range of environmental, biological and social factors. Short, poor and delayed rainfall in 2015 caused critical water shortage, livestock causality and decline in milk production in the pastoral areas of Ethiopia. The relationship between rainfall and vegetation indices was analyzed to identify drought-vulnerable areas in Afar region of Ethiopia using 11 years time series of decadal NDVI, VCI, DSI and SPI using SPOT (2005-2013) and PROVA-V (2014-2015) data. For the validation of drought indices, correlation and regression analyses between NDVI and rainfall (r = 75%), NDVI and crop yield, and VCI and rainfall (r = 90%) were done. The findings showed that there was extreme drought in the Afar region in 2005, 2009, 2011 and 2015. The region was highly prone to drought, even though its severity levels varied in different years. Drought was severe, longer and intense in most of the areas in the region, adversely affecting agricultural productivity and livestock maintenance and management. Assessments of such natural disasters are useful to plan mitigative measures in advance for effective management programmes, including drought hazards.


2021 ◽  
Author(s):  
Nikolaos Christidis ◽  
Peter Stott

<p>As the climate becomes warmer under the influence of anthropogenic forcings, increases in the concentration of the atmospheric water vapour may lead to an intensification of wet and dry extremes. Understanding regional hydroclimatic changes can provide actionable information to help communities adapt to impacts specific to their location. This study employs an ensemble of 9 CMIP6 models and compares experiments with and without the effect of human influence using detection and attribution methodologies. The analysis employs two popular drought indices: the rainfall-based standardised precipitation index (SPI), and its extension, the standardized precipitation evapotranspiration index (SPEI), which also accounts for changes in potential evapotranspiration. Both indices are defined relative to the pre-industrial climate, which enables a comparison between past, present and future climatic conditions. Potential evapotranspiration is computed with the simple, temperature-based, Thornthwaite formula. The latter has been criticised for omitting the influences of radiation, humidity and wind, but has been shown to yield very similar trends, spatial averages and correlations with more sophisticated models. It is therefore deemed to be adequate in studies assessing the broader overall effect of climate change, which are more concerned with wet and dry trends and changes in characteristics of extremes rather than the precise estimation of drought index values. The rainfall-based index suggests a shift towards wetter conditions in the north and dryer in the south of the continent, as well as an overall increase in variability. Nevertheless, when the temperature effect is included, the wet trends in the north are largely masked leading to increasingly drier summers across most of the continent. A formal statistical methodology indicates that the fingerprint of forced climate change has emerged above variability and is thus detectable in the observational trends of both indices. A broadening of the SPI distribution also suggests higher rainfall variability in a warmer climate. The study demonstrates a striking drying trend in the Mediterranean region, suggesting that what were extremely dry conditions there in the pre-industrial climate may become normal by the end of the century.</p>


2013 ◽  
Vol 17 (6) ◽  
pp. 2339-2358 ◽  
Author(s):  
I. H. Taylor ◽  
E. Burke ◽  
L. McColl ◽  
P. D. Falloon ◽  
G. R. Harris ◽  
...  

Abstract. Drought is a cumulative event, often difficult to define and involving wide-reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Our study considers both climate model uncertainty associated with future climate projections, and future emissions of greenhouse gases (future scenario uncertainty). Four drought indices (the Standardised Precipitation Index (SPI), Soil Moisture Anomaly (SMA), the Palmer Drought Severity Index (PDSI) and the Standardised Runoff Index (SRI)) are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57-member perturbed parameter ensemble of climate simulations of the HadCM3C Earth System model, for the baseline period 1961–1990, and the period 2070–2099 ("the 2080s"). We consider where there are statistically significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline. Despite the large range of uncertainty in drought projections for many regions, projections for some regions have a clear signal, with uncertainty associated with the magnitude of change rather than direction. For instance, a significant increase in time spent in drought is generally projected for the Amazon, Central America and South Africa whilst projections for northern India consistently show significant decreases in time spent in drought. Whilst the patterns of changes in future drought were similar between scenarios, climate mitigation, represented by the RCP2.6 scenario, tended to reduce future changes in drought. In general, climate mitigation reduced the area over which there was a significant increase in drought but had little impact on the area over which there was a significant decrease in time spent in drought.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4926 ◽  
Author(s):  
Junqiang Yao ◽  
Yong Zhao ◽  
Xiaojing Yu

Observations indicate that temperature and precipitation patterns changed dramatically in Xinjiang, northwestern China, between 1961 and 2015. Dramatic changes in climatic conditions can bring about adverse effects. Specifically, meteorological drought severity based on the standardized precipitation index (SPI) and the standardized precipitation evapotranspiration index (SPEI) showed a decreasing trend in Xinjiang prior to 1997, after which the trend reversed. SPEI-based drought severity shows a much stronger change during 1997–2015 than the SPI, which is independent of the effect of evaporative demand. Meteorological drought severity has been aggravated by a significant rise in temperature (1.1 °C) over the last two decades that has not been accompanied by a corresponding increase in precipitation. As a result, the evaporative demand in Xinjiang has risen. An examination of a large spatio-temporal extent has made the aggravated drought conditions more evident. Our results indicate that increased meteorological drought severity has had a direct effect on the normalized difference vegetation index (NDVI) and river discharge. The NDVI exhibited a significant decrease during the period 1998–2013 compared to 1982–1997, a decrease that was found to be caused by increased soil moisture loss. A positive relationship was recorded between evaporative demand and the runoff coefficients of the 68 inland river catchments in northwestern China. In the future, meteorological drought severity will likely increase in arid and semiarid regions as global warming continues.


Sign in / Sign up

Export Citation Format

Share Document