standardised precipitation index
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 31)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Gordin Bah Ndah Anyang ◽  
Ngwa Martin Ngwabie ◽  
Samuel Ndonwi Ayonghe

Water resources within Bamenda continue to face climate related stress. This paper sought to assess the impact of climate variability and change on water resources in Bamenda metropolis. Questionnaires, field study and historic climatic data were used to evaluate effects of climatic variability and changes on water resources. Two Representative Concentration Pathway (RCP 2.6 and RCP 8.5) scenarios were used to project climatic data. Standardised Precipitation Index (SPI) was used to determine drought. Irregular rainfall and water shortage were the foremost challenges experienced by the population. Historic data showed an annual decrease in precipitation and increase in temperature. Precipitation shift and a low R-squared values (0.04 - 0.47) for precipitation indicated climatic variation. Decrease precipitation (gradient -11.84) coincided with the periods of droughts (1993 - 2019) given by the negative values of SPI (up to -3). The hydrological changes realised were 23 springs and 13 streams dry off and 27 springs and 16 streams have become seasonal. Projected data showed increase in precipitation and temperature, leaving Bamenda with the challenge of poor water quality that negatively affects public health and development. This study highlights the need to adopt current water and drought management practice in this area.


2021 ◽  
Vol 117 (9/10) ◽  
Author(s):  
Reena H. Seebocus ◽  
Michel R. Lollchund ◽  
Miloud Bessafi

Due to climate change, extreme rainfall and drought events are becoming more and more frequent in several regions of the globe. We investigated the suitability of employing statistical and fractal (or scaling) methods to characterise extreme precipitation and drought events. The case of the island of Mauritius was considered, for which monthly mean rainfall data for the period January 1950 to December 2016 were analysed. The generalised extreme value distribution was used to extract the 10- and 20-year return levels and the Standardised Precipitation Index (SPI) was used to identify anomalous wet and dry events. A log-term correlation analysis was also performed to characterise the relationship between maximum rainfall and its duration. The results indicate that the 10-year return level is approximately between 500 mm and 850 mm and the 20-year return level is between 600 mm and 1000 mm. Results also show that the extreme maximum rainfall events occur mostly during austral summer (November to April) and could be related to the effects of tropical cyclones and La Niña events, while anomalous dry events were found to be significantly persistent with very long periods of drought. Moreover, there was a strong correlation between maximum rainfall and its duration. The methodology used in this work could be very useful in similar studies for other Small Island Developing States.


Author(s):  
Andrzej Araźny ◽  
Arkadiusz Bartczak ◽  
Rafał Maszewski ◽  
Michał Krzemiński

AbstractThis work presents the influence of atmospheric circulation on the occurrence of dry and wet periods in the central Polish region of Kujawy. The material on which the authors relied encompassed monthly totals of precipitation obtained from 10 weather stations in the period 1954–2018. Both dry and wet periods have been identified on the basis of monthly values of the Standardised Precipitation Index (SPI). Additionally, the calendar of circulation types over Central Poland was used to determine the atmospheric circulation indices: western (W), southern (S) and cyclonicity (C). The analyses have indicated that the region concerned experiences low precipitation totals in comparison with the rest of Poland. According to the circulation indices W, S and C, for Central Poland, the air mass advection from the West prevails over that from the East. Moreover, a slightly more frequent inflow of air from the South than from the North has been observed. The frequency of anticyclonic situations is higher than that of the cyclonic types in this part of Europe. Drought spells occurred in the study area at a clear dominance of anticyclonic circulation, with the inflow of air mostly from the North and with increased westerly circulation. On the other hand, the occurrence of wet periods was mainly influenced by cyclonic circulation during the advection of the masses from the South and West. Dry and wet periods accounted for 28% and 27% of the study period, respectively.


2021 ◽  
Vol 13 (16) ◽  
pp. 3307
Author(s):  
Jessica Bhardwaj ◽  
Yuriy Kuleshov ◽  
Zhi-Weng Chua ◽  
Andrew B. Watkins ◽  
Suelynn Choy ◽  
...  

Drought has significant impacts on the agricultural productivity and well-being of Pacific Island communities. In this study, a user-centred integrated early warning system (I-EWS) for drought was investigated for Papua New Guinea (PNG). The I-EWS combines satellite products (Standardised Precipitation Index and Vegetation Health Index) with seasonal probabilistic forecasting outputs (chance of exceeding median rainfall). Internationally accepted drought thresholds for each of these inputs are conditionally combined to trigger three drought early warning stages—”DROUGHT WATCH”, “DROUGHT ALERT” and “DROUGHT EMERGENCY”. The developed I-EWS for drought was used to examine the evolution of a strong El Niño-induced drought event in 2015 as well as a weaker La Niña-induced dry period in 2020. Examining the evolution of drought early warnings at a provincial level, it was found that tailored warning lead times of 3–5 months could have been possible for several impacted PNG provinces. These lead times would enable increasingly proactive drought responses with the potential for prioritised allocation of funds at a provincial level. The methodology utilised within this study uses inputs that are openly and freely available globally which indicates promising potential for adaptation of the developed user-centred I-EWS in other Pacific Island Countries that are vulnerable to drought.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 527
Author(s):  
Geoffrey Mukwada ◽  
Sabelo M. Mazibuko ◽  
Mokhele Moeletsi ◽  
Guy M. Robinson

Climate change has proved to be a threat to food security the world over. Using temperature and precipitation data, this paper examines the differential effects climate change has on different land uses in the Luvuvhu river catchment in South Africa. The paper uses the Normalised Difference Vegetation Index (NDVI) and Vegetation Condition Index (VCI), which were calculated from Landsat images, and the Standardised Precipitation Index (SPI) for a sample of years between 1980 and 2016 to assess how drought and flood frequency have affected the agricultural environment. The results indicate that the lowest SPI values were recorded in 1996/1997, 2001/2002 and 2014/2015, suggesting the occurrence of drought during these years, while the highest SPI values were recorded in 1997/1998, 2002/2003 and 2004/2005. The relationship between three-month SPI (SPI_3) and VCI was strongest in grassland, and subsistence farming areas with the correlation coefficients of 0.8166 (p = 0.0022) and −0.6172 (p = 0.0431), respectively, indicating that rainfall variability had a high negative impact on vegetation health in those land uses with shallow-rooted plants. The findings of this study are relevant to disaster management planning in South Africa, as well as development of farming response strategies for coping with climate hazards in the country.


2021 ◽  
Author(s):  
L. Vergni ◽  
F. Todisco ◽  
B. Di Lena

AbstractIn the literature, numerous papers report comparative analyses of drought indices. In these types of studies, the similarity between drought indices is usually evaluated using the Pearson correlation coefficient, r, calculated between corresponding severity time series. However, it is well known that the correlation does not describe the strength of agreement between two variables. Two drought indices can exhibit a high degree of correlation but can, at the same time, disagree substantially, for example, if one index is consistently higher than the other. From an operational point of view, two indices can be considered in agreement when they indicate the same severity category for a given period (e.g. moderate drought). In this work, we compared six meteorological drought indices based on both correlation analysis and Cohen's Kappa test. This test is typically used in medical or social sciences to obtain a quantitative assessment of the degree of agreement between different methods or analysts. The indices considered are five timescale-dependent indices, i.e. the Percent of Normal Index, the Deciles Index, the Percentile Index, the Rainfall Anomaly Index, and the Standardised Precipitation Index, computed at the 1-, 3-, and 6-month timescales, and the Effective Drought Index, a relatively new index, which has a self-defined timescale. The indices were calculated for 15 stations in the Abruzzo region (central Italy) during 1951–2018. We found that the strength of agreement depends on both the criteria of drought severity classification and the different indices' calculation method. The Cohen's Kappa test indicates a prevailing moderate or fair agreement among the indices considered, despite the generally very high correlation between the corresponding severity times series. The results demonstrate that the Cohen's Kappa test is more effective than the correlation analysis in discriminating the actual strength of agreement/disagreement between drought indices.


Water SA ◽  
2021 ◽  
Vol 47 (2 April) ◽  
Author(s):  
SM Mazibuko ◽  
G Mukwada ◽  
ME Moeletsi

The Luvuvhu River catchment experiences rainfall variability with a high frequency of extremely dry and wet conditions. Understanding the frequency of drought and floods in this catchment area is important to the agriculture sector for managing the negative impacts of these natural hazards. This study was undertaken to investigate the frequency and severity of drought/floods and linkages with the El Niño Southern Oscillation (ENSO) phenomenon. Poor and resource-limited small-scale farmers in the Luvuvhu River catchment area struggle to adjust due to decreasing crop yields and livestock mortality caused by drought and floods. Monthly rainfall data from 15 grid points (0.5° × 0.5°) was used to compute the Standardised Precipitation Index (SPI) for the period between 1979 and 2016. The 3-month SPI was calculated for the December–January–February (DJF) period. The second half of the agricultural season was selected because the influence of ENSO is high during the late summer season (DJF) in the catchment. The SPI results indicate that the agricultural seasons 1982/83, 1991/92 and 2015/16 were characterised by extreme drought. Conversely, the SPI values also show that the wettest seasons were recorded in 1998/99 and 1999/00. The catchment experiences a high frequency of moderate to severe drought in the north and north-eastern parts. Spatially, the occurrence of moderate to severe dry conditions covers large areas in the north and south-western parts. Severe to extreme wet conditions cover large areas in the north and south-eastern parts of the catchment. The SST index (Niño 3.4) shows a strong influence on rainfall variability in the catchment, resulting in either dry or wet conditions. Therefore, this study recommends further research focusing on more climatic modes that influence rainfall variability, as well as further development of drought and flood forecasting to improve farmers’ adaptations options and reliability of weather forecasts used as a tool to manage crop production.


2021 ◽  
Vol 25 (4) ◽  
pp. 1761-1783
Author(s):  
Santosh Nepal ◽  
Saurav Pradhananga ◽  
Narayan Kumar Shrestha ◽  
Sven Kralisch ◽  
Jayandra P. Shrestha ◽  
...  

Abstract. Soil water is a major requirement for biomass production and, therefore, one of the most important factors for agriculture productivity. As agricultural droughts are related to declining soil moisture, this paper examines soil moisture drought in the transboundary Koshi River basin (KRB) in the central Himalayan region. By applying the J2000 hydrological model, daily spatially distributed soil moisture is derived for the entire basin over a 28-year period (1980–2007). A multi-site and multi-variable approach – streamflow data at one station and evapotranspiration data at three stations – was used for the calibration and validation of the J2000 model. In order to identify drought conditions based on the simulated soil moisture, the soil moisture deficit index (SMDI) was then calculated, considering the derivation of actual soil moisture from long-term soil moisture on a weekly timescale. To spatially subdivide the variations in soil moisture, the river basin is partitioned into three distinct geographical regions, namely trans-Himalaya, the mountains, and the plains. Further, the SMDI is aggregated temporally to four seasons – winter, pre-monsoon, monsoon, and post-monsoon – based on wetness and dryness patterns observed in the study area. This has enabled us to look at the magnitude, extent, and duration of soil moisture drought. The results indicated that the J2000 model can simulate the hydrological processes of the basin with good accuracy. Considerable variation in soil moisture was observed in the three physiographic regions and across the four seasons due to high variation in precipitation and temperature conditions. The year 1992 was the driest year and 1998 was the wettest at the basin scale in both magnitude and duration. Similarly, the year 1992 also has the highest number of weeks under drought. Comparing the SMDI with the standardised precipitation index (SPI) suggested that SMDI can reflect a higher variation in drought conditions than SPI. Our results suggested that both the occurrence and severity of droughts have increased in the Koshi River basin over the last 3 decades, especially in the winter and pre-monsoon seasons. The insights provided into the frequency, spatial coverage, and severity of drought conditions can provide valuable contributions towards an improved management of water resources and greater agricultural productivity in the region.


2021 ◽  
Author(s):  
Nikolaos Christidis ◽  
Peter Stott

<p>As the climate becomes warmer under the influence of anthropogenic forcings, increases in the concentration of the atmospheric water vapour may lead to an intensification of wet and dry extremes. Understanding regional hydroclimatic changes can provide actionable information to help communities adapt to impacts specific to their location. This study employs an ensemble of 9 CMIP6 models and compares experiments with and without the effect of human influence using detection and attribution methodologies. The analysis employs two popular drought indices: the rainfall-based standardised precipitation index (SPI), and its extension, the standardized precipitation evapotranspiration index (SPEI), which also accounts for changes in potential evapotranspiration. Both indices are defined relative to the pre-industrial climate, which enables a comparison between past, present and future climatic conditions. Potential evapotranspiration is computed with the simple, temperature-based, Thornthwaite formula. The latter has been criticised for omitting the influences of radiation, humidity and wind, but has been shown to yield very similar trends, spatial averages and correlations with more sophisticated models. It is therefore deemed to be adequate in studies assessing the broader overall effect of climate change, which are more concerned with wet and dry trends and changes in characteristics of extremes rather than the precise estimation of drought index values. The rainfall-based index suggests a shift towards wetter conditions in the north and dryer in the south of the continent, as well as an overall increase in variability. Nevertheless, when the temperature effect is included, the wet trends in the north are largely masked leading to increasingly drier summers across most of the continent. A formal statistical methodology indicates that the fingerprint of forced climate change has emerged above variability and is thus detectable in the observational trends of both indices. A broadening of the SPI distribution also suggests higher rainfall variability in a warmer climate. The study demonstrates a striking drying trend in the Mediterranean region, suggesting that what were extremely dry conditions there in the pre-industrial climate may become normal by the end of the century.</p>


Sign in / Sign up

Export Citation Format

Share Document