Effect of heat treatment on mechanical properties of 3D printed polylactic acid parts

2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.

2021 ◽  
pp. 152808372110649
Author(s):  
Ajay Jayswal ◽  
Sabit Adanur

Fused Deposition Modeling (FDM) is a widely used 3D printing technique, which works based on the principle of melted polymer extrusion through nozzle(s) and depositing them on a build plate layer by layer. However, products manufactured with this method lack proper mechanical strength. In this work, 2/1 twill weave fabric structures are 3D printed using poly (lactic) acid (PLA). The ultimate tensile strength in the warp and weft directions and the modulus (stiffnesses) are measured for non-heat-treated (NHT) samples. The printed samples were heat-treated (HT) to improve the strength and stiffness. The variation in ultimate tensile strength is statistically insignificant in warp direction at all temperatures; however, the tensile strength in weft direction decreased after heat treatment. The modulus in warp direction increased by 31% after heat treatment while in the weft direction it decreased after heat treatment. Differential scanning calorimetry (DSC) tests showed the highest crystallinity at 125°C. The properties of the twill fabrics were compared with a standard dog-bone (DB) specimen using uniaxial tensile tests, Differential scanning calorimetry tests, and optical microscope (OM). For dog-bone specimens, the maximum values of crystallinity, ultimate tensile strength, and modulus were found to be at 125°C. The maximum crystallinity percentages are higher than that of the NHT samples. The ultimate tensile strength of NHT DB specimen 3D printed in horizontal orientation improved after heat treatment. The ultimate tensile strength of DB samples in vertical directions increased after heat treatment as well. The stiffness increased in both directions for DB samples.


2021 ◽  
Vol 58 (2) ◽  
pp. 176-184
Author(s):  
Constantin-Romica Stoica ◽  
Raluca Maier ◽  
Anca Istrate ◽  
Andrei-Cristian Mandoc

The paper presents the study on the static mechanical properties of PLA (Polylactic Acid) produced with entry-level additive technologies using three printing directions. During the experimental work were tested a total of 15 �dog bone� ASTM D638-14 standard specimens made from additively manufactured polymer (PLA) through FDM (Fused Deposition Modelling) technique, where the material and rectilinear pattern infill geometry and infill percentage of 100% were constant and the printing orientation was varied. Usually technical data sheets that are delivered by filament materials producers include the most satisfactory data which are valid for only one specific printing direction. The printing direction is deliberately selected, in such way that the best material characteristics are achieved. In addition to this matter, as the additive manufacturing market grew significantly in the past couple of years, the filament production market showed a consequential growth. The aftermath of this expansion had a direct impact towards the quality and costs of the filaments used for 3D printing, in order to satisfy both the low-end and high-end users. Therefore, in this frame, the present research provides entry-level additively manufactured PLA performances showing significant changes depending on the different printing directions and determine the build orientation influence on the mechanical properties, in the aim of providing aid for both mechanical designer and product manufacturer at the stage of the printed product mechanical properties.


MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1775-1781 ◽  
Author(s):  
Levi C. Felix ◽  
Vladimir Gaál ◽  
Cristiano F. Woellner ◽  
Varlei Rodrigues ◽  
Douglas S. Galvao

ABSTRACTTriply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such families include Primitive (P), Gyroid (G) and Diamond (D) surfaces. From a purely mathematical subject, TPMS have been recently found in materials science as optimal geometries for structural applications. Proposed by Mackay and Terrones in 1991, schwarzites are 3D crystalline porous carbon nanocrystals exhibiting a TPMS-like surface topology. Although their complex topology poses serious limitations on their synthesis with conventional nanoscale fabrication methods, such as Chemical Vapour Deposition (CVD), schwarzites can be fabricated by Additive Manufacturing (AM) techniques, such as 3D Printing. In this work, we used an optimized atomic model of a schwarzite structure from the D family (D8bal) to generate a surface mesh that was subsequently used for 3D-printing through Fused Deposition Modelling (FDM). This D schwarzite was 3D-printed with thermoplastic PolyLactic Acid (PLA) polymer filaments. Mechanical properties under uniaxial compression were investigated for both the atomic model and the 3D-printed one. Fully atomistic Molecular Dynamics (MD) simulations were also carried out to investigate the uniaxial compression behavior of the D8bal atomic model. Mechanical testings were performed on the 3D-printed schwarzite where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology.


2019 ◽  
Vol 821 ◽  
pp. 167-173 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

In this paper, the mechanical properties of Polyethylene terephthalate-glycol (PETG) tensile test specimens have been investigated. The test pieces were prepared using fused deposition modelling (FDM) 3D printing technology. Three print settings were examined which are: raster direction angles, print orientations, and infill percentage and patterns in order to evaluate the anisotropy of objects when employing FDM print method. The variations in stress-strain curves, tensile strength values and elongation at break among the tested samples were studied and compared. Illustration for the broken specimens after the tensile test was accomplished to know how the test pieces printed with various parameters were fractured. A comparison with some previous results regarding the elongation at break has been carried out.


2018 ◽  
Vol 24 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Marco Leite ◽  
André Varanda ◽  
António Relógio Ribeiro ◽  
Arlindo Silva ◽  
Maria Fátima Vaz

Purpose The purpose of this paper is to investigate the effect of a sealing protective treatment on the water absorption and mechanical properties of acrylonitrile butadiene styrene (ABS)-printed parts by fused deposition modelling. Protective products include aqueous acetone solutions with different concentrations, polyurethane wood sealer and aqueous acrylic-based varnish. Design/methodology/approach Open porosity was estimated by the absorption coefficient and the total amount of water retained, obtained from water absorption tests. Mechanical characterization was performed by compressive and tensile tests. Different specimens with different build directions and raster angles were used. Findings The treatments with acetone solutions were not effective in reducing the porosity of ABS parts, as the amount of acetone that reduces effectively the porosity will also affect the sample dimensional stability. The polyurethane treatment was found to reduce the absorption coefficient, but the maximum water content and the open porosity remain almost unchanged in comparison with the ones obtained for untreated specimens. The treatment with an acrylic-based varnish was found to preserve the dimensional stability of the specimens, to reduce the open porosity and to maintain the compression and tension properties of the specimens in different build directions and raster angles. Originality/value Surface modification for water tight applications of ABS 3D printing parts enables new designs where both sealing and the preservation of mechanical properties are important. As per the knowledge of the authors, the water absorption and the mechanical behaviour of ABS 3D printed parts, before and after treatment, were not previously investigated.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012039
Author(s):  
V Sekar ◽  
S Y Eh Noum ◽  
S Sivanesan ◽  
A Putra ◽  
Dg H Kassim ◽  
...  

Abstract In recent times, Additive Manufacturing (AM) has been applied rapidly in almost all fields. This study was conducted to apply the additive manufacturing into an acoustic application by 3D printing the Micro-Perforated Panels (MPP) through Fused Deposition Modelling (FDM) made of Polylactic Acid (PLA) reinforced with wood fibers. MPP were fabricated by altering its perforation volume. Later, the effect of perforation volume on acoustic absorption of the fabricated MPP was measured using the two-microphone impedance tube method as per ISO 10534-2 standard. The result shows altering the perforation volume affects the acoustic absorption of the MPP. MPP with a thickness of 2 mm and a perforation diameter of 0.2 mm shows the maximum sound absorption coefficient of 0.93 at 2173 Hz. It is made possible to absorb the 3D printed MPP made of natural fiber reinforced composite at different spectrums by altering the perforation volume.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2456
Author(s):  
Demei Lee ◽  
Guan-Yu Wu

Three-dimensional (3D) printing is a manufacturing technology which creates three-dimensional objects layer-by-layer or drop-by-drop with minimal material waste. Despite the fact that 3D printing is a versatile and adaptable process and has advantages in establishing complex and net-shaped structures over conventional manufacturing methods, the challenge remains in identifying the optimal parameters for the 3D printing process. This study investigated the influence of processing parameters on the mechanical properties of Fused Deposition Modelling (FDM)-printed carbon fiber-filled polylactide (CFR-PLA) composites by employing an orthogonal array model. After printing, the tensile and impact strengths of the printed composites were measured, and the effects of different parameters on these strengths were examined. The experimental results indicate that 3D-printed CFR-PLA showed a rougher surface morphology than virgin PLA. For the variables selected in this analysis, bed temperature was identified as the most influential parameter on the tensile strength of CFR-PLA-printed parts, while bed temperature and print orientation were the key parameters affecting the impact strengths of printed composites. The 45° orientation printed parts also showed superior mechanical strengths than the 90° printed parts.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


Sign in / Sign up

Export Citation Format

Share Document