scholarly journals Nanofabrication route to achieve sustainable production of next generation defect-free graphene: analysis and characterisation

2021 ◽  
Vol 6 (1) ◽  
pp. 36-43
Author(s):  
Shikhar Misra ◽  
Nirmal Kumar Katiyar ◽  
Arvind Kumar ◽  
Saurav Goel ◽  
Krishanu Biswas

Abstract In the past two decades, graphene has been one of the most studied materials due to its exceptional properties. The scalable route to cost-effective manufacture defect-free graphene has continued to remain a technical challenge. Intrinsically defect-free graphene changes its properties dramatically, and it is a challenging task to control the defects in graphene production using scaled-down subtractive manufacturing techniques. In this work, the exfoliation of graphite was investigated as a sustainable low-cost graphene manufacturing technique. The study made use of a simple domestic appliance e.g., a kitchen blender to churn graphene in wet conditions by mixing with N-Methyl-2-pyrrolidone (NMP). It was found that the centrifugal force-induced turbulent flow caused by the rotating blades exfoliates graphite flakes to form graphene. The technique is endowed with a high yield of defect-free graphene (0.3 g/h) and was deemed suitable to remove 10% fluoride content from the water and color absorption from fizzy drinks.

Author(s):  
Mohd Azril Riduan ◽  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Afifudin Habulat ◽  
Danial Nuruddin Azlan Raofuddin ◽  
...  

Background: Greener epoxidation by using vegetable oil to create an eco-friendly epoxide is being studied because it is a more cost-effective and environmentally friendly commodity that is safer than non-renewable materials. The aim of this research is to come up with low-cost solutions for banana trunk acoustic panels with kinetic modelling of epoxy-based palm oil. Method: In this study, the epoxidation of palm oleic acid was carried out by in situ performic acid to produce epoxidized palm oleic acid. Results: Banana trunk acoustic panel was successfully innovated based on the performance when the epoxy was applied. Lastly, a mathematical model was developed by using the numerical integration of the 4th order Runge-Kutta method, and the results showed that there is a good agreement between the simulation and experimental data, which validates the kinetic model. Conclusion: Overall, the peracid mechanism was effective in producing a high yield of epoxy from palm oleic acid that is useful for the improvement of acoustic panels based on the banana trunk.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Avtar Singh ◽  
Amanjot Kaur ◽  
Anita Dua ◽  
Ritu Mahajan

Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


2018 ◽  
Vol 52 (25) ◽  
pp. 3429-3444 ◽  
Author(s):  
Ezequiel Buenrostro ◽  
Daniel Whisler

Three-dimensional fiber-reinforced foam cores may have improved mechanical properties under specific strain rates and fiber volumes. But its performance as a core in a composite sandwich structure has not been fully investigated. This study explored different manufacturing techniques for the three-dimensional fiber-reinforced foam core using existing literature as a guideline to provide a proof of concept for a low-cost and easily repeatable method comprised of readily available materials. The mechanical properties of the fiber-reinforced foam were determined using a three-point bend test and compared to unreinforced polyurethane foam. The foam was then used in a sandwich panel and subjected to dynamic loading by means of a gas gun (103 s−1). High-strain impact tests validated previously published studies by showing, qualitatively and quantitatively, an 18–20% reduction in the maximum force experienced by the fiber-reinforced core and its ability to dissipate the impact force in the foam core sandwich panel. The results show potential for this cost-effective manufacturing method to produce an improved composite foam core sandwich panel for applications where high-velocity impacts are probable. This has the potential to reduce manufacturing and operating costs while improving performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aumber Abbas ◽  
Tanveer A. Tabish ◽  
Steve J. Bull ◽  
Tuti Mariana Lim ◽  
Anh N. Phan

AbstractGraphene quantum dots (GQDs), a novel type of zero-dimensional fluorescent materials, have gained considerable attention owing to their unique optical properties, size and quantum confinement. However, their high cost and low yield remain open challenges for practical applications. In this work, a low cost, green and renewable biomass resource is utilised for the high yield synthesis of GQDs via microwave treatment. The synthesis approach involves oxidative cutting of short range ordered carbon derived from pyrolysis of biomass waste. The GQDs are successfully synthesised with a high yield of over 84%, the highest value reported to date for biomass derived GQDs. As prepared GQDs are highly hydrophilic and exhibit unique excitation independent photoluminescence emission, attributed to their single-emission fluorescence centre. As prepared GQDs are further modified by simple hydrothermal treatment and exhibit pronounced optical properties with a high quantum yield of 0.23. These modified GQDs are used for the highly selective and sensitive sensing of ferric ions (Fe3+). A sensitive sensor is prepared for the selective detection of Fe3+ ions with a detection limit of as low as 2.5 × 10–6 M. The utilisation of renewable resource along with facile microwave treatment paves the way to sustainable, high yield and cost-effective synthesis of GQDs for practical applications.


2016 ◽  
Vol 6 (2) ◽  
pp. 252-258
Author(s):  
S. Ramesh Sakthivel ◽  
Md Azizurrahaman ◽  
V. Ganesh Prabhu ◽  
V. M. Chariar

Waterless urinals save precious fresh water normally used for flushing and reduce odour levels in restrooms. However, existing models of waterless urinals available on the market are expensive and maintenance costs of the odour traps of these urinals are also quite high. Experiments conducted using a low cost membrane-based waterless-urinal odour prevention trap available in India revealed a reduction of over 90.5% in ammonia gas concentration in the urinals. The ammonia levels observed, in the range of 0.22 to 0.30 ppm in waterless urinals fitted with the odour trap evaluated in this study, is comparable to values reported for the widely used sealant liquid based waterless urinals in the past. No sign of clogging was observed in the clogging tests conducted. Passage of particles up to 4 mm in size in the particle flow analysis tests conducted is somewhat higher than the 2 mm reported for sealant liquid and membrane odour traps in previous studies, and it reveals that the odour trap can perform in adverse conditions without getting clogged. Economics of installation and maintenance aspects of waterless urinals carried out here show that the odour trap evaluated in this study can really be a cost effective alternative.


2021 ◽  
Vol 8 ◽  
Author(s):  
Farwa Altaf ◽  
Shourong Wu ◽  
Vivi Kasim

Thrombosis, a major cause of deaths in this modern era responsible for 31% of all global deaths reported by WHO in 2017, is due to the aggregation of fibrin in blood vessels which leads to myocardial infarction or other cardiovascular diseases (CVDs). Classical agents such as anti-platelet, anti-coagulant drugs or other enzymes used for thrombosis treatment at present could leads to unwanted side effects including bleeding complication, hemorrhage and allergy. Furthermore, their high cost is a burden for patients, especially for those from low and middle-income countries. Hence, there is an urgent need to develop novel and low-cost drugs for thrombosis treatment. Fibrinolytic enzymes, including plasmin like proteins such as proteases, nattokinase, and lumbrokinase, as well as plasminogen activators such as urokinase plasminogen activator, and tissue-type plasminogen activator, could eliminate thrombi with high efficacy rate and do not have significant drawbacks by directly degrading the fibrin. Furthermore, they could be produced with high-yield and in a cost-effective manner from microorganisms as well as other sources. Hence, they have been considered as potential compounds for thrombosis therapy. Herein, we will discuss about natural mechanism of fibrinolysis and thrombus formation, the production of fibrinolytic enzymes from different sources and their application as drugs for thrombosis therapy.


2020 ◽  
Author(s):  
Sangeeta Negi ◽  
Sapna Jain ◽  
Anand Kumar

Abstract In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5) / NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 o C and pH=6 after 72 hours of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further Artificial Neural Networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30°C. The evolved process and Rhizopus oryzae (SN5)/ NCIM-1447 strain would be promising for protease production at industrial scale at low cost.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Sandeep Chaturvedi ◽  
Shiban K. Koul

Design, fabrication, and test results of a novel 3-layer RF package using a commonly available high frequency laminate are presented in this paper. The developed package can be manufactured using standard multilayer printed circuit board (PCB) manufacturing techniques making it cost effective for commercial applications. The package exhibits excellent RF characteristics up to 6 GHz.


2021 ◽  
Vol 10 (3) ◽  
pp. 2525-2534

An efficient, green, and cost-effective synthesis of benzylpyrazolyl coumarin by one-pot four-component condensation of hydrazine hydrate or phenyl hydrazine, ethyl acetoacetate, aromatic aldehyde, and 4-hydroxycoumarin in the presence of Amberlite IR-120 as a catalyst in an aqueous medium has been reported. Shorter reaction time, operation simplicity, low cost of catalyst, and aqueous medium are key advantages of this method for synthesizing benzylpyrazolyl coumarin in moderate to high yield.


Sign in / Sign up

Export Citation Format

Share Document