scholarly journals Fundamental solutions for the long–short-wave interaction system

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1093-1099
Author(s):  
Mustafa Inc ◽  
Samia Zaki Hassan ◽  
Mahmoud Abdelrahman ◽  
Reem Abdalaziz Alomair ◽  
Yu-Ming Chu

Abstract In this article, the system for the long–short-wave interaction (LS) system is considered. In order to construct some new traveling wave solutions, He’s semi-inverse method is implemented. These solutions may be applicable for some physical environments, such as physics and fluid mechanics. These new solutions show that the proposed method is easy to apply and the proposed technique is a very powerful tool to solve many other nonlinear partial differential equations in applied science.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1003-1010
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah ◽  
Münevver Tuz ◽  
...  

Abstract In this article, the Sinh–Gordon function method and sub-equation method are used to construct traveling wave solutions of modified equal width equation. Thanks to the proposed methods, trigonometric soliton, dark soliton, and complex hyperbolic solutions of the considered equation are obtained. Common aspects, differences, advantages, and disadvantages of both analytical methods are discussed. It has been shown that the traveling wave solutions produced by both analytical methods with different base equations have different properties. 2D, 3D, and contour graphics are offered for solutions obtained by choosing appropriate values of the parameters. To evaluate the feasibility and efficacy of these techniques, a nonlinear evolution equation was investigated, and with the help of symbolic calculation, these methods have been shown to be a powerful, reliable, and effective mathematical tool for the solution of nonlinear partial differential equations.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Rashidi ◽  
D. D. Ganji ◽  
S. Dinarvand

The homotopy analysis method (HAM) is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup (WBK) equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.


2005 ◽  
Vol 60 (4) ◽  
pp. 237-244 ◽  
Author(s):  
M. M. Hassan ◽  
A. H. Khater

Abstract The Jacobi elliptic function solutions of coupled nonlinear partial differential equations, including the coupled modified KdV (mKdV) equations, long-short-wave interaction system and the Davey- Stewartson (DS) equations, are obtained by using the mixed dn-sn method. The solutions obtained in this paper include the single and the combined Jacobi elliptic function solutions. In the limiting case, the solitary wave solutions of the systems are also given. - PACS: 02.30.Jr; 03.40.Kf; 03.65.Fd


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2016 ◽  
Vol 20 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Yi Tian ◽  
Zai-Zai Yan

This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.


Author(s):  
Khaled A. Gepreel ◽  
E. M. E. Zayed

In this paper, we use the multiple exp-function method to explicity present traveling wave solutions, double-traveling wave (DTW) solutions and triple-traveling wave solutions (TWs) which include one-soliton, double-soliton and triple-soliton solutions for nonlinear partial differential equations (NPDEs) via, the (2+1)-dimensional and (3+1)-dimensional nonlinear Burgers PDEs in mathematical physics. In this work, we build some series of straightforward and new solutions successfully with the help of a computerized symbol computational software package like Maple or Mathematica. We will make some drawings in some cases with specific values for the relevant parameters for each obtained solutions such as the one-traveling wave solutions, double-traveling wave solutions and TWs. This method is efficient and powerful in solving a wide class of NPDEs.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950342 ◽  
Author(s):  
Aly R. Seadawy ◽  
Kalim U. Tariq ◽  
Jian-Guo Liu

In this paper, the auxiliary expansion equation method is applied to compute the analytical wave solutions for (3[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq and Kadomtsev–Petviashvili (KP) equations. A simple transformation is carried out to reduce the set of nonlinear partial differential equations (NPDEs) into ODEs. These obtained results hold numerous traveling wave solutions that are of key importance in elucidating some physical circumstance.


Sign in / Sign up

Export Citation Format

Share Document