Possible application of lead sulfide quantum dot in memory device

2016 ◽  
Vol 36 (3) ◽  
pp. 293-297 ◽  
Author(s):  
Sweety Sarma

Abstract Unipolar resistive switching behavior was observed in the as-fabricated Al/PVA/PbS QD/ITO device with ROFF/RON ratio of 3.15×103 with retentivity for prolonged time and repeatability of hysteresis loops. Schottky emission mechanism dominates conduction mechanism in low-resistance state and high-resistance state of the device. Unipolar resistive switching behavior observed in the device is attributed to Coulomb blockade. The observed characteristic in the device points toward possible application of PbS QDs in memory device.

2015 ◽  
Vol 1729 ◽  
pp. 23-28 ◽  
Author(s):  
Yogesh Sharma ◽  
Pankaj Misra ◽  
Shojan P. Pavunny ◽  
Ram S. Katiyar

ABSTRACTRare-earth oxides have attracted considerable research interest in resistive random access memories (ReRAMs) due to their compatibility with complementary metal-oxide semiconductor (CMOS) process. To this end we report unipolar resistive switching in a novel ternary rare-earth oxide LaHoO3 (LHO) to accelerate progress and to support advances in this emerging densely scalable research architecture. Amorphous thin films of LHO were fabricated on Pt/TiO2/SiO2/Si substrate by pulsed laser deposition, followed by sputter deposition of platinum top electrode through shadow mask in order to elucidate the resistive switching behavior of the resulting Pt/LHO/Pt metal-insulator-metal (MIM) device structure. Stable unipolar resistive switching characteristics with interesting switching parameters like, high resistance ratio of about 105 between high resistance state (HRS) and low resistance state (LRS), non-overlapping switching voltages with narrow dispersion, and excellent retention and endurance features were observed in Pt/LHO/Pt device structure. The observed resistive switching in LHO was explained by the formation/rupture of conductive filaments formed out of oxygen vacancies and metallic Ho atom. From the current-voltage characteristics of Pt/LHO/Pt structure, the conduction mechanism in LRS and HRS was found to be dominated by Ohm’s law and Poole-Frenkel emission, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Chih-Yi Liu ◽  
Yueh-Ying Tsai ◽  
Wen-Tsung Fang ◽  
Hung-Yu Wang

A 20 nm SiOxlayer is deposited using radio-frequency sputtering to form the resistive switching layer of a Cu/SiOx/Pt memory device. The SiOx-based device demonstrates the resistive switching characteristics with an electrochemical reaction. CF4plasma treatment was used to modify the SiOxlayer and incorporate fluorine atoms into theSiOxlayer. The bombardment damage and fluorine incorporation caused the SiOxfilm to form a stack-like structure. This reduced the operating voltage and improved switching dispersion. The fluorine repaired the Cu/SiOxinterface, thus increasing the barrier height of the Cu/SiOxinterface and the resistance of the high resistance state. A statistical analysis of the conducting filament formation was performed in order to evaluate the number of formation/rupture sites. The resistive switching of the CF4-treated sample had higher possibility to use the same filament sites; thus, the CF4-treated sample had stable resistive switching behavior.


RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 54111-54116 ◽  
Author(s):  
Atul Thakre ◽  
Jyoti Kaswan ◽  
A. K. Shukla ◽  
Ashok Kumar

A robust and reproducible resistance switching in iron substituted strontium titanate is reported which shows giant high to low resistance state ratio (∼105) and stable charge retention.


2015 ◽  
Vol 639 ◽  
pp. 235-238 ◽  
Author(s):  
Haoliang Deng ◽  
Ming Zhang ◽  
Tong Li ◽  
Jizhou Wei ◽  
Shangjie Chu ◽  
...  

2015 ◽  
Vol 15 (10) ◽  
pp. 7569-7572 ◽  
Author(s):  
Sukhyung Park ◽  
Kyoungah Cho ◽  
Jungwoo Jung ◽  
Sangsig Kim

In this study, we demonstrate the enhancement of the nonlinear resistive switching characteristics of HfO2-based resistive random access memory (ReRAM) devices by carrying out thermal annealing of Al2O3 tunnel barriers. The nonlinearity of ReRAM device with an annealed Al2O3 tunnel barrier is determined to be 10.1, which is larger than that of the ReRAM device with an as-deposited Al2O3 tunnel barrier. From the electrical characteristics of the ReRAM devices with as-deposited and annealed Al2O3 tunnel barriers, it reveals that there is a trade-off relationship between nonlinearity in low-resistance state (LRS) current and the ratio of the high-resistance state (HRS) and the LRS. The enhancement of nonlinearity is attributed to a change in the conduction mechanism in the LRS of the ReRAM after the annealing. While the conduction mechanism before the annealing follows Ohmic conduction, the conduction of the ReRAM after the annealing is controlled by a trap-controlled space charge limited conduction mechanism. Additionally, the annealing of the Al2O3 tunnel barriers is also shown to improve the endurance and retention characteristics.


2011 ◽  
Vol 687 ◽  
pp. 106-111
Author(s):  
Chih Yi Liu ◽  
Yu Chen Li ◽  
Chun Hung Lai ◽  
Shih Kun Liu

CuxO and SiO2thin films were deposited using a radio-frequency magnetron sputter on Pt/Ti/SiO2/Si substrates to form SiO2/CuxO/Pt and CuxO/Pt structures. The current-voltage characteristics were measured by DC voltage sweeping using a tungsten (W) probe. The two structures needed a large voltage to initiate the first resistive switching; this sweep was called the forming process. Afterwards, the resistances of the two structures could be switched reversibly between the low-resistance-state (LRS) and high-resistance-state (HRS) by applying a DC voltage. The conduction mechanisms of the LRS and the HRS were dominated by Ohmic conduction. Structures with non-destructive readout characteristics and long retention time were suitable for use in non-volatile memory. The difference between resistive switching in W-probe/SiO2/CuxO/Pt and W-probe/CuxO/Pt structures was investigated. The additional SiO2layer decreased the switching voltages and currents; this should be due to the presence of pinholes within the SiO2layer. The influence of SiO2thickness on the resistive switching characteristics was also investigated. The switching voltages and currents, except the forming voltage, decreased as the thickness of SiO2decreased. The conducting filament model with a thermochemical reaction was suggested to best explain the resistive switching behavior that was observed.


Sign in / Sign up

Export Citation Format

Share Document