scholarly journals Effect of reinforcements on polymer matrix bio-composites – an overview

2018 ◽  
Vol 25 (6) ◽  
pp. 1039-1058 ◽  
Author(s):  
Sumit Das Lala ◽  
Ashish B. Deoghare ◽  
Sushovan Chatterjee

AbstractThe inherent properties of bio-composites such as biodegradability, environment friendly, low cost of production, high strength and durability make them a suitable replacement to traditional materials such as glass and nylon. Bio-polymers are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resistance and ease of manufacturing complex shapes. This paper aims toward a comprehensive study on polymer bio-composites. The review mainly focuses on types of reinforcements such as natural fibers, seed shells, animal fibers, cellulose, bio-polymers, bio-chemicals and bioceramics which enhance the mechanical properties, such as tensile strength, compressive strength, flexural strength, Young’s modulus and creep behavior, of the composites. The pertinent study carried out in this review explores an enormous potentiality of the composites toward a wide variety of applications.

2012 ◽  
Vol 06 ◽  
pp. 780-784
Author(s):  
YEON-HEE LEE ◽  
HAN-KI YOON ◽  
HITOSHI TAKAGI ◽  
KAZUYA OHKITA

Compared with general composites which are produced from fossil fuel, biodegradable resins have received considerable attention as an environment-friendly material. Bamboo fiber has relatively high strength compared with other natural fibers. Therefore, the focus of this study is to produce bamboo fiber reinforced Poly butylene succinate (PBS) composites by injection molding and to study the effects of additive on mechanical properties of this bamboo/PBS composite. The injection-molding is a highly productive fabrication technique. Bamboo/PBS composites were examined by flexural test and Vickers hardness. Also we examined fracture surface and microstructure of the bamboo/PBS composites by microscope.


Author(s):  
K. G. Sinha ◽  
Gaurvendra Pratap Singh ◽  
Lokesh Gautam

As we all know that India is known for its agricultural products rather than its industrial goods. Farmers produce crops and they pet several animals. The waste produced from their animals and crops are utilized by them to some extent but due to unawareness a lot of material goes on waste. Some of these wastes are Bagasse fiber and chicken feather. Also these alternate materials are environment Friendly as well as biodegradable. In poultry industry chicken feather is waste material but it posses high toughness and insulation and is also used as good reinforcing material in polymer matrix composite due to low density, low cost and high aspect. Bagasse having high tensile strength contains about 40% cellulose, 30% hemicelluloses, and 15% lignin which are modified by creating quionones in lignin portion of the fiber and reacting with the furfural alcohol to increase their adhesiveness. Short Natural fibers like chicken and long fibers like bagasse were used in hybrid combination and the fiber weight fraction of 5%, 55% and 40% were used for the fabrication of the composite in epoxy Resin. This composite is manufactured using hand layup process. Mechanical properties of composite are determined through hardness and impact tests. Water absorption tests were conducted by immersing specimen in a water bath at room temperature for different time durations.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


Author(s):  
Sanjay Sharma ◽  
Deepak Verma

Increasing concern about global warming and depleting petroleum reserves and the high cost of petroleum products had made scientists to focus more on the use of natural fibres such as rice husk, baggase, coconut husk, hemp, sisal, jute, flax, banana etc. Past decade has shown many efforts to develop composites to replace the Petroleum and other non-decaying material products. Reinforcement with natural fibre in composites has recently gained attention due to low cost, easy availability, low density, acceptable, strength full, stiffness, ease of separation, enhanced energy recovery, biodegradability and recyclable in nature. Natural fibre composites are suitable as wood substitutes in the construction sector. All these have excellent physical, thermal and mechanical properties and can be utilized more effectively in the development of composite materials. In this connection, an investigation has been carried using rice husk, a natural fibre abundantly available in India.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jong Sung Won ◽  
Ji Eun Lee ◽  
Da Young Jin ◽  
Seung Goo Lee

The effective utilization of original natural fibers as indispensable components in natural resins for developing novel, low-cost, eco-friendly biocomposites is one of the most rapidly emerging fields of research in fiber-reinforced composite. The objective of this study is to investigate the interfacial adhesion properties, water absorption, biodegradation properties, and mechanical properties of the kenaf/soy protein isolate- (SPI-) PVA composite. Experimental results showed that 20 wt% poly (vinyl alcohol) (PVA) and 8 wt% glutaraldehyde (GA) created optimum conditions for the consolidation of the composite. The increase of interfacial shear strength enhanced the composites flexural and tensile strength of the kenaf/SPI-PVA composite. The kenaf/SPI-PVA mechanical properties of the composite also increased with the content of cross-linking agent. Results of the biodegradation test indicated that the degradation time of the composite could be controlled by the cross-linking agent. The degradation rate of the kenaf/SPI-PVA composite with the cross-linking agent was lower than that of the composite without the cross-linking agent.


2013 ◽  
Vol 477-478 ◽  
pp. 1288-1292
Author(s):  
Bo Long Li ◽  
Tong Liu ◽  
Jie Yuan ◽  
Zuo Ren Nie

The high strength and low cost Ti-Fe based alloy was produced by double vacuum induction melting method followed by hot deformation. The microstructure has been investigated by Optical Microscopy, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The microstructure of as-forged alloy is composed of α and β phase without the precipitation of TiFe intermetallic compound. The Ti-Fe-Al alloys show good comprehensive mechanical properties, demonstrating ultimate tensile strength of 1100MPa and elongation above10%. The results indicate the Fe is a good candidate for solution strengthening and simultaneously increasing ductility in titanium alloys. Effect of the Fe and Al elements on the microstructure and mechanical properties have been discussed.


2011 ◽  
Vol 477 ◽  
pp. 313-318 ◽  
Author(s):  
Jian Qiang Wei ◽  
Ming Li Cao ◽  
Hang Yao

As the composite of materials, fibers compositing, which can give full play to synergism of each fiber’s reinforcement, will become an inevitable trend. Calcium carbonate whisker is a kind of green environment-friendly fibrous powder filler with high strength, high modulus and excellent thermal stability, which has been proven that it has obviously toughening and reinforcing effects on cement-based materials. In this paper, CaCO3 whiskers composite with polypropylene fiber were added into concrete as reinforcement. Effect of different content of whiskers and fibers on the mechanical properties of concrete was investigated. The results shows that the composite of CaCO3 whisker and polypropylene fiber (PP) has better toughening and reinforcing effects than that of single filler. The strength of whiskers/PPF-reinforced concrete can be obviously improved compared with that of pure concrete, whisker concrete and PPF concrete. These increases could be correlated to the synergism of PPF and CaCO3 whisker, which are different in size, aspect ratio, elastic modulus, and reinforcing role in concrete.


Sign in / Sign up

Export Citation Format

Share Document