Abstract
A novel nano-hydroxyapatite/bamboo fiber (n-HA/BF) bioactive composite membrane was obtained by a simple casting technique. The membrane forming mechanism and the effects of different forming membrane methods, drying methods and n-HA amounts on the properties of n-HA/BF membrane were investigated by Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, electromechanical universal tester, in vitro soaking in simulated body fluid (SBF) and in vitro cell cultureexperiment. The results demonstrated that the n-HA dispersity in BF matix was not affected by the prepartion condition, however, the morphologies of membrane was determined by the different preparation conditions owing to different hydrogen bond shrinkage. Moreover, the hydrophilicity of the composite membrane was improved under the condition of the membrane formation in oven, freeze drying and high addition content of n-HA, and the mechanical properties of composite membrane depended on n-HA content. In vitro soaking behavior indicated that the degradability and bone-like apatite deposition could be controled by differentpreparation conditions. And the cell proliferation experiment showed that the n-HA/BF composite membranes obtained under different preparation conditions were all non-toxic. The above results indicated that the n-HA/BF composite membrane could be obtained by a simple casting technique, and the properties could be controlled by adopting different preparation conditions, which would have a great promising as guide bone tissue regeneration (GBR) membrane, and the study would provide a new application for BF in biomedical field.