scholarly journals The partially pre-ordered set of compactifications of Cp(X, Y)

2015 ◽  
Vol 3 (1) ◽  
Author(s):  
A. Dorantes-Aldama ◽  
R. Rojas-Hernández ◽  
Á. Tamariz-Mascarúa

AbstractIn the set of compactifications of X we consider the partial pre-order defined by (W, h) ≤X (Z, g) if there is a continuous function f : Z ⇢ W, such that (f ∘ g)(x) = h(x) for every x ∈ X. Two elements (W, h) and (Z, g) of K(X) are equivalent, (W, h) ≡X (Z, g), if there is a homeomorphism h : W ! Z such that (f ∘ g)(x) = h(x) for every x ∈ X. We denote by K(X) the upper semilattice of classes of equivalence of compactifications of X defined by ≤X and ≡X. We analyze in this article K(Cp(X, Y)) where Cp(X, Y) is the space of continuous functions from X to Y with the topology inherited from the Tychonoff product space YX. We write Cp(X) instead of Cp(X, R).We prove that for a first countable space Y, K(Cp(X, Y)) is not a lattice if any of the following cases happen:(a) Y is not locally compact,(b) X has only one non isolated point and Y is not compact.Furthermore, K(Cp(X)) is not a lattice when X satisfies one of the following properties:(i) X has a non-isolated point with countable character,(ii) X is not pseudocompact,(iii) X is infinite, pseudocompact and Cp(X) is normal,(iv) X is an infinite generalized ordered space.Moreover, K(Cp(X)) is not a lattice when X is an infinite Corson compact space, and for every space X, K(Cp(Cp(X))) is not a lattice. Finally, we list some unsolved problems.

1999 ◽  
Vol 22 (3) ◽  
pp. 659-665 ◽  
Author(s):  
Woo Chorl Hong

First, we introduce sequential convergence structures and characterize Fréchet spaces and continuous functions in Fréchet spaces using these structures. Second, we give sufficient conditions for the expansion of a topological space by the sequential closure operator to be a Fréchet space and also a sufficient condition for a simple expansion of a topological space to be Fréchet. Finally, we study on a sufficient condition that a sequential space be Fréchet, a weakly first countable space be first countable, and a symmetrizable space be semi-metrizable.


1985 ◽  
Vol 101 (3-4) ◽  
pp. 253-271 ◽  
Author(s):  
O. A. Arino ◽  
T. A. Burton ◽  
J. R. Haddock

SynopsisWe consider a system of functional differential equationswhere G: R × B → Rn is T periodic in t and B is a certain phase space of continuous functions that map (−∞, 0[ into Rn. The concepts of B-uniform boundedness and B-uniform ultimate boundedness are introduced, and sufficient conditions are given for the existence of a T-periodic solution to (1.1). Several examples are given to illustrate the main theorem.


1976 ◽  
Vol 65 (2) ◽  
pp. 337-345 ◽  
Author(s):  
Le Baron Ferguson ◽  
Michael D. Rusk

Sign in / Sign up

Export Citation Format

Share Document