Solving Fractional Partial Differential Equations with Variable Coefficients by the Reconstruction of Variational Iteration Method

2015 ◽  
Vol 70 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Esmail Hesameddini ◽  
Azam Rahimi

AbstractIn this article, we propose a new approach for solving fractional partial differential equations with variable coefficients, which is very effective and can also be applied to other types of differential equations. The main advantage of the method lies in its flexibility for obtaining the approximate solutions of time fractional and space fractional equations. The fractional derivatives are described based on the Caputo sense. Our method contains an iterative formula that can provide rapidly convergent successive approximations of the exact solution if such a closed form solution exists. Several examples are given, and the numerical results are shown to demonstrate the efficiency of the newly proposed method.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sertan Alkan ◽  
Aydin Secer

We employ the sinc-Galerkin method to obtain approximate solutions of space-fractional order partial differential equations (FPDEs) with variable coefficients. The fractional derivatives are used in the Caputo sense. The method is applied to three different problems and the obtained solutions are compared with the exact solutions of the problems. These comparisons demonstrate that the sinc-Galerkin method is a very efficient tool in solving space-fractional partial differential equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ai-Min Yang ◽  
Jie Li ◽  
H. M. Srivastava ◽  
Gong-Nan Xie ◽  
Xiao-Jun Yang

The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.


2020 ◽  
Vol 34 (2) ◽  
pp. 203-221
Author(s):  
Ali Khalouta ◽  
Abdelouahab Kadem

AbstractThis work presents a numerical comparison between two efficient methods namely the fractional natural variational iteration method (FNVIM) and the fractional natural homotopy perturbation method (FNHPM) to solve a certain type of nonlinear Caputo time-fractional partial differential equations in particular, nonlinear Caputo time-fractional wave-like equations with variable coefficients. These two methods provided an accurate and efficient tool for solving this type of equations. To show the efficiency and capability of the proposed methods we have solved some numerical examples. The results show that there is an excellent agreement between the series solutions obtained by these two methods. However, the FNVIM has an advantage over FNHPM because it takes less time to solve this type of nonlinear problems without using He’s polynomials. In addition, the FNVIM enables us to overcome the diffi-culties arising in identifying the general Lagrange multiplier and it may be considered as an added advantage of this technique compared to the FNHPM.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 59-69
Author(s):  
Jamshad Ahmad ◽  
Syed Tauseef Mohyud-Din

In this paper, we applied relatively new fractional complex transform (FCT) to convert the given fractional partial differential equations (FPDEs) into corresponding partial differential equations (PDEs) and Variational Iteration Method (VIM) is to find approximate solution of time- fractional Fornberg-Whitham and time-fractional Wu-Zhang equations. The results so obtained are re-stated by making use of inverse transformation which yields it in terms of original variables. It is observed that the proposed algorithm is highly efficient and appropriate for fractional PDEs arising in mathematical physics and hence can be extended to other problems of diversified nonlinear nature. Numerical results coupled with graphical representations explicitly reveal the complete reliability and efficiency of the proposed algorithm.  DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11687BIBECHANA 12 (2015) 59-69 


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 328-336 ◽  
Author(s):  
Bo Tang ◽  
Yingzhe Fan ◽  
Jianping Zhao ◽  
Xuemin Wang

AbstractIn this paper, based on Jumarie’s modified Riemann-Liouville derivative, we apply the fractional variational iteration method using He’s polynomials to obtain solitary and compacton solutions of fractional KdV-like equations. The results show that the proposed method provides a very effective and reliable tool for solving fractional KdV-like equations, and the method can also be extended to many other fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document