scholarly journals Application of Sinc-Galerkin Method for Solving Space-Fractional Boundary Value Problems

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Sertan Alkan ◽  
Aydin Secer

We employ the sinc-Galerkin method to obtain approximate solutions of space-fractional order partial differential equations (FPDEs) with variable coefficients. The fractional derivatives are used in the Caputo sense. The method is applied to three different problems and the obtained solutions are compared with the exact solutions of the problems. These comparisons demonstrate that the sinc-Galerkin method is a very efficient tool in solving space-fractional partial differential equations.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We implement relatively analytical methods, the homotopy perturbation method and the variational iteration method, for solving singular fractional partial differential equations of fractional order. The process of the methods which produce solutions in terms of convergent series is explained. The fractional derivatives are described in Caputo sense. Some examples are given to show the accurate and easily implemented of these methods even with the presence of singularities.


2015 ◽  
Vol 70 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Esmail Hesameddini ◽  
Azam Rahimi

AbstractIn this article, we propose a new approach for solving fractional partial differential equations with variable coefficients, which is very effective and can also be applied to other types of differential equations. The main advantage of the method lies in its flexibility for obtaining the approximate solutions of time fractional and space fractional equations. The fractional derivatives are described based on the Caputo sense. Our method contains an iterative formula that can provide rapidly convergent successive approximations of the exact solution if such a closed form solution exists. Several examples are given, and the numerical results are shown to demonstrate the efficiency of the newly proposed method.


2020 ◽  
Vol 34 (2) ◽  
pp. 203-221
Author(s):  
Ali Khalouta ◽  
Abdelouahab Kadem

AbstractThis work presents a numerical comparison between two efficient methods namely the fractional natural variational iteration method (FNVIM) and the fractional natural homotopy perturbation method (FNHPM) to solve a certain type of nonlinear Caputo time-fractional partial differential equations in particular, nonlinear Caputo time-fractional wave-like equations with variable coefficients. These two methods provided an accurate and efficient tool for solving this type of equations. To show the efficiency and capability of the proposed methods we have solved some numerical examples. The results show that there is an excellent agreement between the series solutions obtained by these two methods. However, the FNVIM has an advantage over FNHPM because it takes less time to solve this type of nonlinear problems without using He’s polynomials. In addition, the FNVIM enables us to overcome the diffi-culties arising in identifying the general Lagrange multiplier and it may be considered as an added advantage of this technique compared to the FNHPM.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Di Xu ◽  
Fanwei Meng

Abstract In this article, we regard the generalized Riccati transformation and Riemann–Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


2011 ◽  
Vol 347-353 ◽  
pp. 463-466
Author(s):  
Xue Hui Chen ◽  
Liang Wei ◽  
Lian Cun Zheng ◽  
Xin Xin Zhang

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ahmad El-Ajou ◽  
Zeyad Al-Zhour

In this paper, we introduce a series solution to a class of hyperbolic system of time-fractional partial differential equations with variable coefficients. The fractional derivative has been considered by the concept of Caputo. Two expansions of matrix functions are proposed and used to create series solutions for the target problem. The first one is a fractional Laurent series, and the second is a fractional power series. A new approach, via the residual power series method and the Laplace transform, is also used to find the coefficients of the series solution. In order to test our proposed method, we discuss four interesting and important applications. Numerical results are given to authenticate the efficiency and accuracy of our method and to test the validity of our obtained results. Moreover, solution surface graphs are plotted to illustrate the effect of fractional derivative arrangement on the behavior of the solution.


Sign in / Sign up

Export Citation Format

Share Document