Bifurcation analysis in a predator–prey model with strong Allee effect

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingwen Zhu ◽  
Ranchao Wu ◽  
Mengxin Chen

Abstract In this paper, strong Allee effects on the bifurcation of the predator–prey model with ratio-dependent Holling type III response are considered, where the prey in the model is subject to a strong Allee effect. The existence and stability of equilibria and the detailed behavior of possible bifurcations are discussed. Specifically, the existence of saddle-node bifurcation is analyzed by using Sotomayor’s theorem, the direction of Hopf bifurcation is determined, with two bifurcation parameters, the occurrence of Bogdanov–Takens of codimension 2 is showed through calculation of the universal unfolding near the cusp. Comparing with the cases with a weak Allee effect and no Allee effect, the results show that the Allee effect plays a significant role in determining the stability and bifurcation phenomena of the model. It favors the coexistence of the predator and prey, can lead to more complex dynamical behaviors, not only the saddle-node bifurcation but also Bogdanov–Takens bifurcation. Numerical simulations and phase portraits are also given to verify our theoretical analysis.

Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


2012 ◽  
Vol 05 (02) ◽  
pp. 1250023 ◽  
Author(s):  
YONGLI CAI ◽  
WEIMING WANG ◽  
JINFENG WANG

In this paper, we investigate the dynamics of a diffusive predator–prey model with Holling-II functional response and the additive Allee effect in prey. We show the local and global asymptotical stability of the positive equilibrium, and give the conditions of the existence of the Hopf bifurcation. By carrying out global qualitative and bifurcation analysis, it is shown that the weak and strong Allee effects in prey can induce different dynamical behavior in the predator–prey model. Furthermore, we use some numerical simulations to illustrate the dynamics of the model. The results may be helpful for controlling and managing the predator–prey system.


2018 ◽  
Vol 28 (05) ◽  
pp. 1850062 ◽  
Author(s):  
Limin Zhang ◽  
Lan Zou

In this paper, the bifurcations and the control of a discrete predator–prey model with strong Allee effect on the prey are investigated. This shows that the model undergoes a supercritical Neimark–Sacker bifurcation. Meanwhile, the explicit approximate expression of the stable closed invariant curve caused by the Neimark–Sacker bifurcation is given. 1:3 strong resonance is investigated through approximation by a flow, and the bifurcation curves around 1:3 resonance are obtained. Moreover, for the sake of regulating the stability of the biological system, we extend the hybrid control strategy to control the Neimark–Sacker bifurcation and 1:3 strong resonance. The theoretical analyses are validated by numerical simulations and are explained from the biological point of view.


Sign in / Sign up

Export Citation Format

Share Document