Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Constantin Fetecau ◽  
Dumitru Vieru ◽  
Abdul Rauf ◽  
Tahir Mushtaq Qureshi

Abstract Some mixed initial-boundary value problems are analytically studied. They correspond to unsteady motions of the incompressible upper-convected Maxwell (IUCM) fluids with linear dependence of viscosity on the pressure between infinite horizontal parallel plates. The fluid motion is generated by the upper plate that applies time-dependent shear stresses to the fluid. Exact solutions are established for the dimensionless velocity and nontrivial shear stress fields using a suitable change of the spatial variable and the Laplace transform technique. They are presented as sum of the steady-state and transient components and are used to determine the required time to reach the permanent state. Comparisons between exact and numerical solutions indicate an excellent agreement. Analytical solutions for the unsteady motion of the same fluids induced by an exponential shear stress on the boundary are obtained as limiting cases of the general solutions. Moreover, the steady-state solutions corresponding to the ordinary IUCM fluids performing the initial motions are provided by means of asymptotic approximations of standard Bessel functions. Finally, spatial variation of starting solutions and the influence of physical parameters on the fluid motion are graphically underlined and discussed.

2018 ◽  
Vol 77 (18) ◽  
pp. 1581-1595
Author(s):  
V. L. Pazynin ◽  
S. S. Sautbekov ◽  
K. Yu. Sirenko ◽  
Yurii Konstantinovich Sirenko ◽  
A. A. Vertiy ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 952-971
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Mokhtar Kirane ◽  
Berikbol T. Torebek

Abstract This paper is devoted to the study of initial-boundary value problems for time-fractional analogues of Korteweg-de Vries, Benjamin-Bona-Mahony, Burgers, Rosenau, Camassa-Holm, Degasperis-Procesi, Ostrovsky and time-fractional modified Korteweg-de Vries-Burgers equations on a bounded domain. Sufficient conditions for the blowing-up of solutions in finite time of aforementioned equations are presented. We also discuss the maximum principle and influence of gradient non-linearity on the global solvability of initial-boundary value problems for the time-fractional Burgers equation. The main tool of our study is the Pohozhaev nonlinear capacity method. We also provide some illustrative examples.


Sign in / Sign up

Export Citation Format

Share Document