The Use of Structural Adhesives for Steel–Glass Facade Panels With Multi-Axial Stress–Strain Behavior—Experimental and Numerical Investigations

Author(s):  
C. Richter ◽  
B. Abeln ◽  
A. Geßler ◽  
M. Feldmann
2005 ◽  
Vol 127 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Ming Cheng ◽  
Weinong Chen ◽  
Tusit Weerasooriya

Kevlar® KM2 fiber is a transversely isotropic material. Its tensile stress-strain response in the axial direction is linear and elastic until failure. However, the overall deformation in the transverse directions is nonlinear and nonelastic, although it can be treated linearly and elastically in infinitesimal strain range. For a linear, elastic, and transversely isotropic material, five material constants are needed to describe its stress-strain response. In this paper, stress-strain behavior obtained from experiments on a single Kevlar KM2 fiber are presented and discussed. The effects of loading rate and the influence of axial loading on transverse and transverse loading on axial stress-strain responses are also discussed.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5590-5595 ◽  
Author(s):  
TOSHIMASA NAGAI ◽  
TAKESHI IWAMOTO ◽  
TOSHIYUKI SAWA ◽  
YASUHISA SEKIGUCHI ◽  
HIDEAKI KURAMOTO ◽  
...  

The impact deformation behavior and the strain sensitivity of structural adhesives are experimentally investigated by using INSTRON-type universal testing machine and split Hopkinson pressure bar apparatus. The experimental results show some fundamental features of the typical compressive stress-strain behavior of polymers with linear elastic and nonlinear inelastic deformation stages. In the inelastic deformation, the peak stress, and the strain-softening stage after the peak can be observed at the entire range of strain-rate from 10-4 to 103 /s. In addition, it can be found that the relationship between the peak stress at the strain-softening stage and strain-rate for a semi-logarithm curve is linear in a range of low strain rate, however, that becomes nonlinear at high strain rate. Finally, some constitutive models try to be applied for to describe the stress-strain behavior of structural adhesives.


2019 ◽  
Vol 97 ◽  
pp. 341-356 ◽  
Author(s):  
Syed Minhaj Saleem Kazmi ◽  
Muhammad Junaid Munir ◽  
Yu-Fei Wu ◽  
Indubhushan Patnaikuni ◽  
Yingwu Zhou ◽  
...  

2020 ◽  
Vol 218 ◽  
pp. 110851 ◽  
Author(s):  
Muhammad Junaid Munir ◽  
Syed Minhaj Saleem Kazmi ◽  
Yu-Fei Wu ◽  
Indubhushan Patnaikuni ◽  
Junfeng Wang ◽  
...  

2007 ◽  
Vol 340-341 ◽  
pp. 1485-1490 ◽  
Author(s):  
Tetsuya Yoshida ◽  
Takayuki Oishi ◽  
Michihiro Takiguchi ◽  
Fusahito Yoshida

The effects of temperature and strain rate on flow stress of a highly ductile acrylic adhesive were investigated by performing tensile lap shear experiments on an adhesively bonded single-lap joint, as well as torsion experiments on a tubular butt-joint at temperatures ranging from 10 to 40oC at various shear strain rates. The flow stress decreases considerably with decreasing strain rate and with temperature rise. The stress-strain responses under multi-axial stress conditions were also examined by performing combined tension-torsion experiments on the butt-joint. A constitutive model of temperature-dependent elasto-viscoplasticity that describes multi-axial stress-strain behavior of the adhesive is presented.


Sign in / Sign up

Export Citation Format

Share Document