Cumulation of High-Temperature Low-Cycle Fatigue Damage in Two-Temperature Tests

2009 ◽  
pp. 194-194-18 ◽  
Author(s):  
J Reuchet ◽  
M. Réger ◽  
F Rezai-Aria ◽  
L Rémy
Author(s):  
W. Z. Wang ◽  
J. H. Zhang ◽  
H. F. Liu ◽  
Y. Z. Liu

Linear damage method is widely used to calculate low-cycle fatigue damage of turbine rotor in the long-term operation without fully considering the interaction between creep and low cycle fatigue. However, with the increase of steam turbine pressure and temperature, the influence of high-temperature creep on the strain distribution of turbine rotor becomes significant. Accordingly, the strain for each start-up or shut-down process is different. In the present study, the stress and strain during 21 iterations of continuous start-up, running and shut-down processes was numerically investigated by using the finite element analysis. The influence of high-temperature creep on low cycle fatigue was analyzed in terms of equivalent strain, Mises stress and low cycle fatigue damage. The results demonstrated that the life consumption of turbine rotor due to low cycle fatigue in the long-term operation of startup, running and shutdown should be determined from the full-time coverage of the load of turbine rotor.


2017 ◽  
Vol 123 ◽  
pp. 24-34 ◽  
Author(s):  
Sebastien Dezecot ◽  
Vincent Maurel ◽  
Jean-Yves Buffiere ◽  
Fabien Szmytka ◽  
Alain Koster

Author(s):  
Andrea Riva ◽  
Sergei Riazantsev ◽  
Stefano Foletti ◽  
Stefano Beretta

Abstract In order to safely increase gas turbine efficiency without issues of early damage and failures, component life evaluation must neither be too conservative nor too optimistic. The method used for designing the parts is supposed to be as accurate as possible, so that the subsequent application of the appropriate statistically defined safety factors will not excessively reduce the component life estimation. In order to achieve such important targets, all phenomena that can be detrimental for fatigue damage, such as multiaxiality and non-proportionality, need to be properly addressed by the Low Cycle Fatigue (LCF) assessment method. In particular, high temperature gas turbine rotating parts are characterized by a superposition of thermal and centrifugal stresses, which act in the same location but along different directions (i.e. multiaxiality) in different moments of the start-up/base-load/shut-down cycle (i.e. non-proportionality). In this framework, critical plane approaches are the most appropriate methods for an accurate and reliable low cycle fatigue life estimation. These methods search the most critical plane where the greatest damage will be accumulated by defining a damage parameter that is calculated for all planes. Among several methods developed in the academic community and considered in this work, the Fatemi-Socie method was identified as the most effective for the studied materials and components. The Fatemi-Socie damage parameter is a combination of in-plane shear strain and normal stress, which accounts for the fact that fatigue damage (of the materials object of the study) is developed along shear strain with an important contribution of tensile normal stress, which is responsible for crack opening and propagation. An extensive testing campaign was performed to identify the most appropriate approach for the studied materials and to accurately fit all the model parameters. The testing campaign therefore included high temperature LCF tests and several types of multiaxial tests (tension-torsion, notched specimens, etc.). Since the search for the critical plane can be demanding from the point of view of computing resources, an in-house software was developed with the scope of reducing the calculation time consistently with the speed required by the industrial design loops. This paper will cover the background and the assumptions behind the development of a complete industrial workflow for the evaluation of LCF life of rotors and disks, prior to its systematic application for a significant number of Ansaldo components.


Author(s):  
EM O’Hara ◽  
NM Harrison ◽  
BK Polomski ◽  
RA Barrett ◽  
SB Leen

This article is concerned with the high temperature low cycle fatigue behaviour of a new nano-strengthened martensitic-ferritic steel, MarBN. A range of strain-controlled, low cycle fatigue tests are presented on MarBN at 600 ℃ and 650 ℃, and compared with previously published data for a current state-of-the-art material, P91 steel, including microstructural analysis of the fracture mechanisms. A modified Chaboche damage law, incorporating Coffin–Manson life prediction, is implemented within a hyperbolic sine unified cyclic viscoplastic constitutive model. Calibration and validation of the model with respect to the effects of strain-rate and strain-range is performed based on an optimisation procedure for identification of the material parameters. The cyclic viscoplasticity model with damage successfully predicts fatigue damage evolution and life in the cyclically softening materials, MarBN and P91.


2016 ◽  
Vol 69 (2) ◽  
pp. 315-318
Author(s):  
G. V. K. Kishore ◽  
K. Mariappan ◽  
Anish Kumar ◽  
Vani Shankar ◽  
R. Sandhya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document