cast aluminum alloy
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 57)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 355 ◽  
pp. 01003
Author(s):  
Kangjie Yan ◽  
Weiqing Huang ◽  
Zhengxing Zuo ◽  
Jinxiang Liu ◽  
Peirong Ren ◽  
...  

In view of the non-uniform distribution of mechanical properties of cast aluminum alloy cylinder head, the mechanical properties evaluation and microstructure heterogeneity of cylinder head were studied. The results showed that the head plate position of the cylinder head has the best mechanical properties and microstructure characterization, followed by the floor plate and the thick partition plate. The mechanical properties of the floor plate position attenuate with increasing temperature. From 23°C to 300°C, the tensile strength and yield strength decrease in the same range, but the break elongation changes most obviously. The mechanical properties and microstructure characterization of cylinder head in-situ sampling satisfy the Hall-Petch relationship. If the required ultimate tensile strength is not less than 255MPa, the upper threshold of the grain size, by considering the error limit of the Hall-Petch relationship, is 603.4μm, and the upper threshold of secondary dendrite arm spacing is 69.1μm. Meanwhile, established the relationship between hardness and yield strength, the average error of the nonlinear model is 4.35%. The prediction accuracy of the nonlinear model is sufficient to meet the actual needs of the engineering.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 295
Author(s):  
Ruizhang Hu ◽  
Chun Guo ◽  
Mingliang Ma

The non-heat-treated, die-cast aluminum alloy samples were prepared meticulously via die-casting technology. The crystal structure, microstructure, and phase composition of the samples were comprehensively studied through electron backscatter diffraction (EBSD), metallographic microscopy, spectrometer, and transmission electron microscopy (TEM). The microhardness and tensile properties of the samples were tested. The die-cast samples were found to have desirable properties by studying the structure and performance of the samples. There were no defects, such as pores, cold partitions, or surface cracks, found. The metallographic structure of the samples was mainly α-Al, and various phases were distributed at the grain boundaries. Before heat treating, α-Al grains were mainly equiaxed with a great number of second phase particles at the grain boundaries. After heat treating, the α-Al grains were massive and coarsened, and the second phase grains were refined and uniformly distributed, compared with those before the heat treating. The EBSD results showed that the grain boundary Si particles were solid solution decomposed after heat treatment. The particles became smaller, and their distribution was more uniform. Transmission electron microscopy found that there were nano-scale Al-Mn, Al-Cu, and Cu phases dispersed in the samples. The average microhardness of the samples before heat treating was 114 HV0.1, while, after the heat treating, the microhardness reached 121 HV0.1. The mechanical features of the samples were tremendous, and the obtained die-cast aluminum alloy had non-heat-treatment performance, which was greater than the ordinary die-cast aluminum alloys with a similar composition. The tensile strength of the aluminum alloys reached up to 310 MPa before heat treatment.


2021 ◽  
Vol 100 (4) ◽  
pp. 24-32
Author(s):  
A.V. Narivsky ◽  
◽  
O.M. Smirnov ◽  
V.E. Panarin ◽  
Yu.P. Skorobagatko ◽  
...  

Growth of production of cast products and the desire of enterprises to reduce the cost of manufacturing metal products led to a significant increase in requirements for the structure and properties of aluminum alloys. Increasing of physical and mechanical properties of alloys is most effectively at the stages of their preparation in liquid state. At that, it is possible to affect effectively on the quality of cast metal by external actions on alloys, deep refining from gases and harmful impurities, active modifying of alloy, reducing or eliminating the negative impact of heredity of charge materials. The main disadvantage of the processes of structure refinement of alloys by using modifiers is instability of their results, which depends on various reasons. One of the most important reasons is providing conditions for the formation and preservation of active modifier particles in the melt volume. They are assimilating by liquid alloy and acting on crystal nucleus at crystallization. It is known that only ~10% particles are active of the total number of particles added with the ligature into the melt. Other particles dissolve in the melt, take away by the crystallization front, or push back on to intergranular boundaries. The considered methods of electromagnetic, MHD and plasma actions on liquid metal allow to refine and modify alloys without use of special reagents. The paper presents studying of the structure and properties of supereutectic silumin A390 after treatment in casting magnetodynamic installation (MDI) by submerged into melt the plasma argon jet and alternating electromagnetic field & magnetohydrodynamic (MHD) effects, including simultaneous combination. There are developed the scientific and technological bases of MHD-plasma processing of liquid hypereutectic silumin A390 and original equipment for their realization. It provides dispersed structure of solidified alloy. Thus, there is a significant decreasing of sizes both particles of primary silicon and dendrites of α-solid solution of aluminium. Also, strength characteristics of alloys increased to 10%, and elongation rises up in 1.5-2 times. Keywords: plasma jet, magnetodynamic installation (MDI), aluminum alloy, mechanical properties.


Author(s):  
Peter Martin ◽  
Allen Luccitti ◽  
Mark Walluk

Abstract The deposition of new alloy to replace a worn or damaged surface layer is a common strategy for repairing or remanufacturing structural components. Solid state methods, such as additive friction stir deposition (AFSD), mitigate the challenges associated with traditional fusion methods by depositing material at temperatures below the melting point. In this work, AFSD of aluminum alloy 6061-T6 was investigated as a means to fill machined grooves in a substrate of cast aluminum alloy Al-1.4Si-1.1Cu-1.5Mg-2.1Zn. The combination of machining and deposition simulate a repair in which damaged material is mechanically removed, then replaced using AFSD. Three groove geometries were evaluated by means of metallographic inspection, and tensile and fatigue testing. For the process conditions and groove geometries used in this study, the effective repair depth was limited to 2.3 – 2.6 mm; below that depth, the interface between the filler and substrate materials exhibited poor bonding associated with insufficient shear deformation. The deposited filler alloy closely matched the cast alloy substrate in both strength and hardness. In addition, the fatigue life during fully reversed axial fatigue testing was 66% of that predicted from historical data for comparable stress amplitudes. The results suggest that there is potential to utilize AFSD of 6061 as a viable repair process for cast Al-1.4Si-1.1Cu-1.5Mg-2.1Zn and other comparable alloys.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1441
Author(s):  
Ingvild Runningen ◽  
Ida Westermann ◽  
Trond Furu ◽  
Harald Justnes

In traditional reinforced concrete, the alkaline pore solution which passivates the steel rebars will get neutralized with time in an exposed environment. Therefore, to prevent corrosion initiation, the permeability of the concrete is reduced and extra-thick concrete covers the steel rebars. Aluminum is passive in the neutralized environment, but the calcium hydroxide formed during the cement hydration will dissolve the aluminum. By substituting 55% of the cement in traditional cement paste with fast reactive supplementary cementitious material (SCM), aluminum will be compatible over time. In the initial state however, before the SCM consumes the hydroxide formed during the rapid cement hydration by the pozzolanic reaction, aluminum may corrode. Hydrogen gas then develops, resulting in a porous cement region enclosing the rebars with potentially reduced bond strength. In the present work, the chemical stability of a sand-cast aluminum lattice embedded in a paste where cement is replaced by 55% calcined kaolinitic clay is investigated by gas chromatography and open-circuit potential during the cement hydration. The hydrogen gas development stagnated for all measurements, indicating that aluminum is compatible with the novel cement paste. Two stable potentials were observed for the non-heat treated samples, indicating the formation of a metastable complex. Being able to use aluminum-reinforced concrete constructions would result in an extraordinary long service life with low cement consumption, which will potentially result in a substantial reduction in the third-largest CO2 emitting industry.


Sign in / Sign up

Export Citation Format

Share Document