scholarly journals Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites

2004 ◽  
Vol 24 (44) ◽  
pp. 9760-9769 ◽  
Author(s):  
N. Takei
2018 ◽  
Vol 46 (07) ◽  
pp. 1519-1534 ◽  
Author(s):  
Chih-Chia Huang ◽  
Mang-Hung Tsai ◽  
Ya-Chieh Wu ◽  
Kuang-Ti Chen ◽  
Han-Wen Chuang ◽  
...  

Puerarin is a traditional Chinese medicine with beneficial effects of reduced depression-like behaviors in mice with stress. Previous studies also show that puerarin can produce neuroprotective effect via activating the Akt or increased brain-derived neurotrophic factor (BDNF) expression. Interestingly, BDNF and Akt downstream target, mammalian target of rapamycin (mTOR) mediate the fast-acting antidepressant properties of ketamine. Until now, the involvement of the mTOR signaling pathway or BDNF on puerarin-induced antidepressant effect remains unknown. We aimed to investigate whether the antidepressant-like effect induced by puerarin would associate mTOR signaling pathway and BDNF release. The antidepressant-like effects of puerarin were evaluated using the forced swim test. The activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptor (AMPAR)-mTOR signaling pathway and release of BDNF in the prefrontal cortex were determined. We also investigated the effect of puerarin on AMPAR trafficking through measuring the PKA phosphorylation of AMPAR subunit GluR1. Our present results show that puerarin exerted antidepressant-like responses that was mediated by AMPAR-induced mTOR signaling pathway and associated with increased BDNF release. Moreover, a significant increase in the GluR1 phosphorylation at its PKA site was noted following puerarin treatment. Our findings are the first to demonstrate that the antidepressant-like actions of puerarin require AMPAR–mTOR signaling pathway activation, are associated with an increased BDNF level and facilitate AMPAR membrane insertion. These findings provide preclinical evidence that puerarin may possess antidepressant property which is mediated by the glutamatergic system.


2013 ◽  
Vol 97 (2) ◽  
pp. 286-294 ◽  
Author(s):  
Moïse Coëffier ◽  
Sophie Claeyssens ◽  
Christine Bôle-Feysot ◽  
Charlène Guérin ◽  
Brigitte Maurer ◽  
...  

2012 ◽  
Vol 444 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Yilin Huo ◽  
Valentina Iadevaia ◽  
Zhong Yao ◽  
Isabelle Kelly ◽  
Sabina Cosulich ◽  
...  

mTORC1 [mTOR (mammalian target of rapamycin) complex 1] regulates diverse cell functions. mTORC1 controls the phosphorylation of several proteins involved in mRNA translation and the translation of specific mRNAs, including those containing a 5′-TOP (5′-terminal oligopyrimidine). To date, most of the proteins encoded by known 5′-TOP mRNAs are proteins involved in mRNA translation, such as ribosomal proteins and elongation factors. Rapamycin inhibits some mTORC1 functions, whereas mTOR-KIs (mTOR kinase inhibitors) interfere with all of them. mTOR-KIs inhibit overall protein synthesis more strongly than rapamycin. To study the effects of rapamycin or mTOR-KIs on synthesis of specific proteins, we applied pSILAC [pulsed SILAC (stable isotope-labelling with amino acids in cell culture)]. Our results reveal, first, that mTOR-KIs and rapamycin differentially affect the synthesis of many proteins. Secondly, mTOR-KIs inhibit the synthesis of proteins encoded by 5′-TOP mRNAs much more strongly than rapamycin does, revealing that these mRNAs are controlled by rapamycin-insensitive outputs from mTOR. Thirdly, the synthesis of certain other proteins shows a similar pattern of inhibition. Some of them appear to be encoded by ‘novel’ 5′-TOP mRNAs; they include proteins which, like known 5′-TOP mRNA-encoded proteins, are involved in protein synthesis, whereas others are enzymes involved in intermediary or anabolic metabolism. These results indicate that mTOR signalling may promote diverse biosynthetic processes through the translational up-regulation of specific mRNAs. Lastly, a SILAC-based approach revealed that, although rapamycin and mTOR-KIs have little effect on general protein stability, they stabilize proteins encoded by 5′-TOP mRNAs.


Sign in / Sign up

Export Citation Format

Share Document