2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
M Johnston

In machine learning, it is common to require a large number of instances to train a model for classification. In many cases, it is hard or expensive to acquire a large number of instances. In this paper, we propose a novel genetic programming (GP) based method to the problem of automatic image classification via adopting a one-shot learning approach. The proposed method relies on the combination of GP and Local Binary Patterns (LBP) techniques to detect a predefined number of informative regions that aim at maximising the between-class scatter and minimising the within-class scatter. Moreover, the proposed method uses only two instances of each class to evolve a classifier. To test the effectiveness of the proposed method, four different texture data sets are used and the performance is compared against two other GP-based methods namely Conventional GP and Two-tier GP. The experiments revealed that the proposed method outperforms these two methods on all the data sets. Moreover, a better performance has been achieved by Naïve Bayes, Support Vector Machine, and Decision Trees (J48) methods when extracted features by the proposed method have been used compared to the use of domain-specific and Two-tier GP extracted features. © Springer International Publishing 2013.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Thanh Vân Phan ◽  
Lama Seoud ◽  
Hadi Chakor ◽  
Farida Cheriet

Age-related macular degeneration (AMD) is a disease which causes visual deficiency and irreversible blindness to the elderly. In this paper, an automatic classification method for AMD is proposed to perform robust and reproducible assessments in a telemedicine context. First, a study was carried out to highlight the most relevant features for AMD characterization based on texture, color, and visual context in fundus images. A support vector machine and a random forest were used to classify images according to the different AMD stages following the AREDS protocol and to evaluate the features’ relevance. Experiments were conducted on a database of 279 fundus images coming from a telemedicine platform. The results demonstrate that local binary patterns in multiresolution are the most relevant for AMD classification, regardless of the classifier used. Depending on the classification task, our method achieves promising performances with areas under the ROC curve between 0.739 and 0.874 for screening and between 0.469 and 0.685 for grading. Moreover, the proposed automatic AMD classification system is robust with respect to image quality.


Author(s):  
Kritika Vohra, Et. al.

Signature is used for recognition of an individual. Signature is considered as a mark that an individual write on a paper for his/her identity or proof. It is used as a unique feature for identifying an individual. It is highly used in social and business functions which gives rise to verification of signature. There are chances of signature getting forged. Hence, the need to identify signature as genuine of forged is utmost important. In this paper, identification of signature as genuine or forged is done using two approaches. First approach is using SVM and second is using CNN. For SVM, pre-processing of signature image is done and feature extraction is performed. Features extracted are histogram of gradient, shape, aspect ratio, bounding area, contour area and convex hull area. Further, SVM is applied to classify signature as genuine or forged and accuracy is determined. In the second approach, signature image is pre-processed, CNN is used to classify signature as genuine or forged and accuracy is determined. Dataset used here is ICDAR Dutch dataset along with 80 signatures taken from 4 people.Dutch dataset consists of 362 signature imagesand signature images taken from 4 people consists 10 genuine and 10 forged signatures which sums to 442 signature images. The proposed system provides accuracy of 86.39% using SVM and around 83.78% using CNN.


Author(s):  
P. NAGENDRA BABU ◽  
K.CHAITHANYA SAGAR ◽  
A.SURENDRA REDDY

Several papers have recently appeared in the literature which propose pseudo-dynamic features for automatic static handwritten signature verification based on the use of gray level values from signature stroke pixels. Good results have been obtained using rotation invariant uniform local binary patternsLBP plus LBP and statistical measures from gray levelco-occurrence matrices (GLCM) with MCYT and GPDS offline signature corpuses. In these studies the corpuses contain signatures written on a uniform white “nondistorting” background, however the gray level distribution of signature strokes changes when it is written on a complex background, such as a check or an invoice. The aim of this paper is to measure gray level features robustness when it is distorted by a complex background and also to propose more stable features. A set of different checks and invoices with varying background complexity is blended with the MCYT and GPDS signatures. The blending model is based on multiplication. The signature models are trained with genuine signatures on white background and tested with other genuine and forgeries mixed with different backgrounds. Results show that a basic version of local binary patterns (LBP) or local derivative and directional patterns are more robust than rotation invariant uniform LBP or GLCM features to the gray level distortion when using a support vector machine with histogram oriented kernels as a classifier.


Author(s):  
Subhash Chandra ◽  
Sushila Maheshkar

Off-line hand written signature verification performs at the global level of image. It processes the gray level information in the image using statistical texture features. The textures and co-occurrence matrix are analyzed for features extraction. A first order histogram is also processed to reduce different writing ink pens used by signers. Samples of signature are trained with SVM model where random and skilled forgeries have been used for testing. Experimental results are performed on two databases: MCYT-75 and GPDS Synthetic Signature Corpus.


Sign in / Sign up

Export Citation Format

Share Document