Evaluating The Ocean Cleanup, a Marine Debris Removal Project in the North Pacific Gyre, Using SWOT Analysis

2019 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Evan Morrison ◽  
Alexandra Shipman ◽  
Shradha Shrestha ◽  
Evan Squier ◽  
Kaitlin Stack Whitney

Plastic pollution in oceans, also known as marine debris, is a growing problem at local and global scales. Anthropogenic marine debris poses a serious threat to many marine species, both through physical harm such as ingestion or entanglement and by carrying toxins and pathogens. This debris accumulates in oceanic gyres, concentrating these effects in some specific areas. In addition, marine debris may have devastating impacts on tourism and fishing-based economies, especially where ocean currents direct this debris. Recently, a nonprofit organization called The Ocean Cleanup proposed the first large-scale in situ marine debris removal project. The Ocean Cleanup is a project attempting to use large, floating, semi-fixed screens to harness ocean currents and accumulate debris, where it can be efficiently collected and disposed of or recycled. The project currently is working on implementing itself in the “Great Pacific Garbage Patch,” in the North Pacific Gyre. We examine this project case, as it is the first organization attempting to clean up marine debris at this scale. Understanding the potential efficacy and limitations of The Ocean Cleanup Project as a case study can give critical insights into how other projects could be created in the future to address marine plastic pollution worldwide. Using SWOT (strengths, weaknesses, opportunities, and threats) analysis to assess a marine debris cleanup can inform both a nuanced evaluation of the specific case as well as provide a means to explore marine debris as a complex, global environmental problem.

Nature ◽  
1995 ◽  
Vol 378 (6552) ◽  
pp. 22-22 ◽  
Author(s):  
David M. Karl

2006 ◽  
Vol 134 (12) ◽  
pp. 3567-3587 ◽  
Author(s):  
Linda M. Keller ◽  
Michael C. Morgan ◽  
David D. Houghton ◽  
Ross A. Lazear

Abstract A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.


Author(s):  
David M. Karl ◽  
Ricardo Letelier ◽  
Dale V. Hebel ◽  
David F. Bird ◽  
Christopher D. Winn

2019 ◽  
Vol 19 (6) ◽  
pp. 3927-3937 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic amplification causes the meridional temperature gradient between middle and high latitudes to decrease. Through this decrease the large-scale circulation in the midlatitudes may change and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal transports and their changes in time, we analysed ERA-Interim daily winter data of vertically integrated horizontal moist static energy transport using self-organizing maps (SOMs). Three general transport pathways have been identified: the North Atlantic pathway with transport mainly over the northern Atlantic, the North Pacific pathway with transport from the Pacific region, and the Siberian pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected to negative temperature anomalies over the central Arctic. These North Pacific pathways have been becoming less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favour transport through the North Atlantic into the central Arctic are connected to positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic–cold continents pattern. Further, it could be shown that transport through the North Atlantic has been becoming more frequent during the last decades.


2015 ◽  
Vol 2 (7) ◽  
pp. 150177 ◽  
Author(s):  
Yulia V. Ivashchenko ◽  
Phillip J. Clapham

The failure of international efforts to manage commercial whaling was exemplified by revelations of large-scale illegal whale catches by the USSR over a 30 year period following World War II. Falsifications of catch data have also been reported for Japanese coastal whaling, but to date there has been no investigation of the reliability of catch statistics for Japanese pelagic (factory fleet) whaling operations. Here, we use data of known reliability from Soviet whaling industry reports to show that body lengths reported to the International Whaling Commission (IWC) by Japanese factory fleets for female sperm whales caught in the North Pacific are not credible. In 1968/1969, Japanese whaling fleets in the North Pacific killed 1568 females, of which 1525 (97.3%) were reported as being at or above the IWC's minimum length of 11.6 m (legal-sized females, LSFs). By contrast, Soviet fleets operating during this period killed 12 578 females; only 824 (6.6%) were LSFs. Adjusting for effort, catches of LSFs were up to 9.1 times higher for Japan compared with the USSR, and even higher for very large females. Dramatic differences in body length statistics were evident when both nations operated in the same area. Significantly, the frequency of LSFs and very large females in the Japanese catch markedly declined after the IWC's International Observer Scheme in 1972 made illegal whaling more difficult. We conclude that the Japanese length data reflect systematic falsification of catch statistics submitted to the IWC, with serious implications for the reliability of data used in current population assessments. The apparent ease with which catch data were falsified in the past underscores the necessity of transparent and independent inspection procedures in any future commercial whaling.


2017 ◽  
Vol 30 (5) ◽  
pp. 1861-1880 ◽  
Author(s):  
Xiaohui Ma ◽  
Ping Chang ◽  
R. Saravanan ◽  
Raffaele Montuoro ◽  
Hisashi Nakamura ◽  
...  

Abstract Local and remote atmospheric responses to mesoscale SST anomalies associated with the oceanic front and eddies in the Kuroshio Extension region (KER) are studied using high- (27 km) and low-resolution (162 km) regional climate model simulations in the North Pacific. In the high-resolution simulations, removal of mesoscale SST anomalies in the KER leads to not only a local reduction in cyclogenesis but also a remote large-scale equivalent barotropic response with a southward shift of the downstream storm track and jet stream in the eastern North Pacific. In the low-resolution simulations, no such significant remote response is found when mesoscale SST anomalies are removed. The difference between the high- and low-resolution model simulated atmospheric responses is attributed to the effect of mesoscale SST variability on cyclogenesis through moist baroclinic instability. It is only when the model has sufficient resolution to resolve small-scale diabatic heating that the full effect of mesoscale SST forcing on the storm track can be correctly simulated.


Sign in / Sign up

Export Citation Format

Share Document