Performance Analysis on Eco-friendly Machining of Ti6Al4V using Powder Mixed with Different Dielectrics in WEDM

Author(s):  
S. Chakraborty ◽  
S. Mitra ◽  
D. Bose

The recent scenario of modern manufacturing is tremendously improved in the sense of precision machining and abstaining from environmental pollution and hazard issues. In the present work, Ti6Al4V is machined through wire EDM (WEDM) process with powder mixed dielectric and analyzed the influence of input parameters and inherent hazard issues. WEDM has different parameters such as peak current, pulse on time, pulse off time, gap voltage, wire speed, wire tension and so on, as well as dielectrics with powder mixed. These are playing an essential role in WEDM performances to improve the process efficiency by developing the surface texture, microhardness, and metal removal rate. Even though the parameter’s influencing, the study of environmental effect in the WEDM process is very essential during the machining process due to the high emission of toxic vapour by the high discharge energy. In the present study, three different dielectric fluids were used, including deionised water, kerosene, and surfactant added deionised water and analysed the data by taking one factor at a time (OFAT) approach. From this study, it is established that dielectric types and powder significantly improve performances with proper set of machining parameters and find out the risk factor associated with the PMWEDM process.

2021 ◽  
Vol 309 ◽  
pp. 01110
Author(s):  
K. Satyanarayana ◽  
B Ramya Krishna ◽  
M. Bhargavi ◽  
R. Eswari Vasuki ◽  
K. Raj Kiran

Wire electric discharge machining (WEDM) is one amongst the unconventional machining processes which might cut all kinds of shapes with an accuracy of +/−0.001mm. It will cut the materials that conduct electricity and can even cut the exotic metals like tungsten carbide, Hastelloy, Inconel etc. In the present work, machining on Inconel 600 by wire EDM with cryogenically treated brass wire is performed. Brass wire of 0.25mm diameter has been cryogenically treated at −90°C, −100°C and −110°C temperatures separately. An Experimental layout is designed as per Taguchi’s L-9 orthogonal array and experiments were conducted by varying machining parameters viz. Voltage, Pulse ON time and Pulse OFF time. The machining parameters are optimized using Taguchi’s methodology for minimum surface roughness and maximum metal removal rate (MRR). A Mathematical regression model for surface roughness and MRR is generated with the help of regression analysis. Through the Analysis of Variance (ANOVA) It was found that for MRR, pulse on time is the foremost contributing factor with 32.69% and for surface roughness, pulse off time is the foremost contributing factor with 23.59%.


2016 ◽  
Vol 852 ◽  
pp. 212-217 ◽  
Author(s):  
S.K. Dinesh Kumar ◽  
R. Selvanayagam ◽  
M. Sivakumar ◽  
S. Krishnaraj

Wire electrical discharge machine (WEDM) is extensively used in machining of conductive material where precision is of prime importance. Machining operation in WEDM is treated as a challenging one because improvement of more than one Machining performance characteristics are sought to obtain precision work. This project illustrates the implementation of Taguchi technique to select the best optimal machining parameters of WEDM process using Copper powders. In general the machining parameters namely metal removal rate and the surface roughness are determined in WEDM process. The machining material chosen for the experiment is HCHCr alloy steel. Experiments were conducted as per Taguchi’s L18 orthogonal array under different cutting conditions of pulse on-time, pulse off-time, current and frequency and the results are compared. The level of significance of the machining parameters on the output characteristics is identified by Analysis of Variance. Finally this research concludes that the copper powder suspended demineralized water when used as dielectric gives higher MRR and lower Ra. Taguchi optimization is carried out to find the best combination of machining parameters to obtain the desired result


2018 ◽  
Vol 63 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Partha Protim Das ◽  
Sunny Diyaley ◽  
Shankar Chakraborty ◽  
Ranjan Kumar Ghadai

Wire electro discharge machining (WEDM) is a versatile non-traditional machining process that is extensively in use to machine the components having intricate profiles and shapes. In WEDM, it is very important to select the optimal process parameters so as to enhance the machine performance. This paper emphasizes the selection of optimal parametric combination of WEDM process while machining on EN31 steel, using grey-fuzzy logic technique. Process parameters such as servo voltage, wire tension, pulse-on-time and pulse-off-time were considered while taking into account several multi-responses such as material removal rate (MRR) and surface roughness (SR). It was found that pulse-on-time of 115 µs, pulse-off-time of 35 µs, servo voltage of 40 V and wire tension of 5 kgf results in a larger value of grey fuzzy reasoning grade (GFRG) which tends to maximize MRR and improve SR. Finally, analysis of variance (ANOVA) is applied to check the influence of each process parameters in the estimation of GFRG.


2014 ◽  
Vol 592-594 ◽  
pp. 831-835 ◽  
Author(s):  
Vikram Singh ◽  
Sharad Kumar Pradhan

The objective of the present work is to investigate the effects of various WEDM process parameters like pulse on time, pulse off time, corner servo, flushing pressure, wire feed rate, wire tension, spark gap voltage and servo feed on the material removal rate (MRR) & Surface Roughness (SR) and to obtain the optimal settings of machining parameters at which the material removal rate (MRR) is maximum and the Surface Roughness (SR) is minimum in a range. In the present investigation, Inconel 825 specimen is machined by using brass wire as electrode and the response surface methodology (RSM) is for modeling a second-order response surface to estimate the optimum machining condition to produce the best possible response within the experimental constraints.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 256
Author(s):  
S Rajamanickam ◽  
R Palani ◽  
V Sathyamoorthy ◽  
Muppala Jagadeesh Varma ◽  
Shaik Shaik Mahammad Althaf ◽  
...  

As on today, Electrical Discharge Machining (EDM) is world famous unconventional machining process for electrically conductive materials. In this project work, Ti-6Al-4V is performed in electrical discharge machining using differently shaped (circular and convex) copper electrode. The machining parameters considered are the pulse on- time, pulse off-time, voltage and current to investigate machining characteristics like material removal rate and tool wear rate. Taguchi method is applied to frame experimental design. Ti-6Al-4V finds wide usage in industrial applications such as marine, aerospace, bio-medical and so on. 


2019 ◽  
Vol 969 ◽  
pp. 715-719
Author(s):  
G. Gowtham Reddy ◽  
Balasubramaniyan Singaravel ◽  
K. Chandra Shekar

Electric Discharge Machining (EDM) is used to machine complex geometries of difficult to cut materials in the area of making dies, mould and tools. Currently, hydrocarbon based dielectric fluids are used in EDM and which plays major role for material removal and it emits harmful emission. In this work, vegetable oil is attempted as dielectric fluid and their performance are studied during processing of AISI P20 steel. The effect of pulse on time (Pon) , pulse off time (Poff), and current (A) on Material Removal Rate (MRR), Tool wear rate (TWR) and surface roughness (SR) are analyzed. The result showed that vegetable oils are given good machining performance than conventional dielectric fluids. These proposed dielectric fluids are biodegradable eco friendly and enhance sustainability in EDM process.


2011 ◽  
Vol 110-116 ◽  
pp. 1683-1690 ◽  
Author(s):  
Vishal Parashar ◽  
A. Rehman ◽  
J.L. Bhagoria

In this paper, statistical and regression analysis of material removal rate using design of experiments is proposed for WEDM operations. Experimentation was planned as per Taguchi’s mixed orthogonal array. Each experiment has been performed under different cutting conditions of gap voltage, pulse ON time, pulse OFF time, wire feed and dielectric flushing pressure. Stainless Steel grade 304L was selected as a work material to conduct the experiments. From experimental results, the material removal rate was determined for each machining performance criteria. Analysis of variance (ANOVA) technique was used to find out the variables affecting the material removal rate. Assumptions of ANOVA were discussed and carefully examined using analysis of residuals. Variation of the material removal rate with machining parameters was mathematically modeled by using the regression analysis method. The developed model was validated with a set of experimental data and appeared to be satisfactory. Signal to noise ratio was applied to measure the performance characteristics deviating from the actual value. Finally, experimental confirmation was carried out to identify the effectiveness of this proposed method.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2020 ◽  
Vol 8 (5) ◽  
pp. 3045-3052

Wire Electrical Discharge Machining (WEDM) is a widely used non-traditional machining process used for machining of hard and difficult-to-machine materials. Proper selection of machining parameters in WEDM is required for better output performance, such as Material Removal Rate (MRR), Wire Wear Rate (WWR) and Surface Roughness (SR) etc. In the present paper, Pulse ON time, Pulse OFF time, Peak Current, Spark Voltage, Wire Feed and Wire Tension were taken as the input parameters to optimize MRR, WWR and SR. A set of 27 experiments were performed as per Taguchi Design. A Fuzzy model has been proposed to select the optimum values of machining parameters. The proposed fuzzy model was found to predict the experimental values with more than 90 percent accuracy.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1105
Author(s):  
Nagarajan Lenin ◽  
Mahalingam Sivakumar ◽  
Gurusamy Selvakumar ◽  
Devaraj Rajamani ◽  
Vinothkumar Sivalingam ◽  
...  

In this work, wire electrical discharge machining (WEDM) of aluminum (LM25) reinforced with fly ash and boron carbide (B4C) hybrid composites was performed to investigate the influence of reinforcement wt% and machining parameters on the performance characteristics. The hybrid composite specimens were fabricated through the stir casting process by varying the wt% of reinforcements from 3 to 9. In the machinability studies, the WEDM process control parameters such as gap voltage, pulse-on time, pulse-off time, and wire feed were varied to analyze their effects on machining performance including volume removal rate and surface roughness. The WEDM experiments were planned and conducted through the L27 orthogonal array approach of the Taguchi methodology, and the corresponding volume removal rate and surface roughness were measured. In addition, the multi-parametric ANOVA was performed to examine the statistical significance of the process control parameters on the volume removal rate and surface roughness. Furthermore, the spatial distribution of the parameter values for both the responses were statistically analyzed to confirm the selection of the range of the process control parameters. Finally, the quadratic multiple linear regression models (MLRMs) were formulated based on the correlation between the process control parameters and output responses. The Grass–Hooper Optimization (GHO) algorithm was proposed in this work to identify the optimal process control parameters through the MLRMs, in light of simultaneously maximizing the volume removal rate and minimizing the surface roughness. The effectiveness of the proposed GHO algorithm was tested against the results of the particle swarm optimization and moth-flame optimization algorithms. From the results, it was identified that the GHO algorithm outperformed the others in terms of maximizing volume removal rate and minimizing the surface roughness values. Furthermore, the confirmation experiment was also carried out to validate the optimal combination of process control parameters obtained through the GHO algorithm.


Sign in / Sign up

Export Citation Format

Share Document