Laser Machining of Die Steel (EN-31): An Experimental Approach to Optimise Process Parameters using Response Surface Methodology

Author(s):  
A. R. Patel ◽  
S. N. Bhavsar

Experiments were performed based on response surface methodology (RSM) to investigate the process parameters effect on the features of hole geometry. Cutting speed (of 500-1000 mm/min), laser power (of 2000-4000 W), frequency (of 800-2000 Hz), duty cycle (of 75-95%), and gas pressure (of 0.05-0.15 bar) were considered as variable parameters. Deviation in the dimension of entrance and exit holes, heat affected zone (HAZ) on the upper & lower edge, and roughness were the output to analyse the cutting quality of 14 mm thick normal and heat-treated (HT) EN-31 die steel using 4 kW CO2 laser. For untreated plate, minimum taper angle was achieved with low cutting speed, higher laser power, and gas pressure. Higher cutting speed, low laser power, and higher gas pressure result in the minimum HAZ. For the HT plate, the mid-range of parameters results in the minimum taper angle and HAZ. An optimised model was developed, and the confirmatory test gives roughness up to 0.27 microns and it shows good agreement with the mathematical model. At the cross-section of holes, striation pattern, resolidified layer, and corner qualities were visually inspected. Surface damage near the cutting edge was observed using scanning electron microscopy.

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


2018 ◽  
Vol 53 (11) ◽  
pp. 1459-1473 ◽  
Author(s):  
Shiva Dayal Rao B ◽  
Abhijeet Sethi ◽  
Alok Kumar Das

In the present investigation, a continuous wave fiber laser with maximum power of 400 W was used to cut a glass fiber reinforced plastic sheet of 4.56 mm thickness using Nitrogen as assisting gas. The influence processing parameters such as laser irradiance, gas pressure, and cutting speed on the cut surface quality were investigated by using response surface methodology. The different responses of laser cut surface such as upper kerf width, taper percentage along the cut depth, and heat-affected zone on the top surface were measured to analyze the influence of input process parameters on the responses. A statistical analysis on the obtained results was conducted and found that the optimum values of different input process parameters were laser irradiance: 8.28 × 105 watt/cm2, cutting speed: 600 mm/min and assisting gas pressure: 7.84 bar. The corresponding values of responses were upper kerf width: 177.4 µm, taper 0.73%, and heat-affected zone on top surface: 109.23 µm. The confirmation experiments were conducted with the obtained optimum parameter setting and observed that the predicted values and experimental values for upper kerf width, taper percentage and top surface heat-affected zone were within the error limits of 2.52%, 1.84%, and 0.45%, respectively. Furthermore, damages like loose fibers, interlayer fractures, evaporation of matrix material and fiber breakages were observed.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2020 ◽  
Vol 29 (1) ◽  
pp. 19-35
Author(s):  
Anish Kumar ◽  
Renu Sharma

AbstractMagnetic field assisted electrical discharge machining (MFAEDM) is the modification of in conventional EDM process by use of magnetic field on EN-31. This article explain the application of response surface methodology to analyzes the effect of various process parameters such as Ton, Toff and Ip on performance measures such as material removal rate (MRR), electrode wear rate (EWR) and overcut (OC). Analysis of variance was used to check the adequacy of response surface model and significance of process parameters on performance measures. Multi-objective desirability function has been applied to obtain the optimal process parameter settings. Thereafter, machined surface of EN-31 characterized through SEM and EDX. The novelty of this paper is to improve the strategies for flushing the debris which remain clogged in standard EDM in-between machining gap that will interrupts the regular discharge conditions and reduces cutting rate as well as deteriorate the surface characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Madhanagopal Manoharan ◽  
Arul Kulandaivel ◽  
Adinarayanan Arunagiri ◽  
Mohamad Reda A. Refaai ◽  
Simon Yishak ◽  
...  

Milling is the surface machining process by removing material from the raw stock using revolving cutters. This process accounts for a major stake in most of the Original Equipment Manufacturing (OEM) industries. This paper discusses optimizing process parameters for machining the AA 2014 T 651 using a vertical milling machine with coated cutting tools. The process parameters such as cutting speed, depth of cut, and type of the cutting tool with all its levels are identified from the previous literature study and several trial experiments. The Taguchi L9 Orthogonal Array (OA) is used for the experimental order with the chosen input parameters. The commonly used cutting tools in the machining industry, such as High-Speed Steel (HSS) and its coated tools, are considered in this study. These tools are coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN) by Physical Vapor Deposition (PVD) technique. The output responses such as cutting forces along the three-axis are measured using a milling tool dynamometer for the corresponding input factors. The input process parameters are optimized by considering the output responses such as MRR, machining torque, and thrust force. Grey Taguchi-based Response Surface Methodology (GTRSM) is used for multiobjective multiresponse optimization problems to find the optimum input process parameter combination for the desired response. Polynomial regression equations are generated to understand the mathematical relation between the input factor and output responses as well as Grey Relational Grade (GRG) values. The optimum process parameter combination from the desirability analysis is the HSS tool coated with TiAlN at a cutting speed of 270 rpm and a depth of cut value of 0.2 mm.


2011 ◽  
Vol 291-294 ◽  
pp. 1433-1439 ◽  
Author(s):  
Zhen Kai Xu ◽  
Kai Wang ◽  
Min Feng Jiang ◽  
Yang Hu ◽  
Cheng Zhang ◽  
...  

In order to determine the optimum joint conditions, four key process parameters affecting the joint quality of laser transmission joint of 1mm thick PET film and PC film,namely,laser power, scanning speed, clamping pressure and scanning number are optimized by response surface methodology in this paper. The interaction effect of main process parameters on joint quality is researched. The samples are tested using a multi-axis microtester in order to determine joint strength. The morphology of the joining area is observed with an optical microscope. Design Expert analysis indicates that the best laser power, scanning speed, clamping pressure and scanning number on joint quality were 35.7W, 5.0mm/s, 0.75MPa, 3, respectively. Finally, the experimental results are consistent with the predicted, which illustrates that the developed mathematical models can predict the responses adequately.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


2021 ◽  
Vol 11 (13) ◽  
pp. 5998
Author(s):  
Constantin Cristinel Girdu ◽  
Catalin Gheorghe ◽  
Constanta Radulescu ◽  
Daniela Cirtina

This paper presents an experimental research that proposes to determine the influence of process parameters on CO2 laser cutting of 8 mm thick Hardox 400 steel, for which Kerf has a minimum value. The experimental research was conducted according to a complete factorial plan with laser power, assistant gas pressure and cutting speed as the input parameters, and cutting width as the dependable variable. The Design of Experiment (DOE) consisted of 27 references and was completed with four replicas to determine the variation of the Kerf average. Functional, linear and quadratic relations were determined, which describe the Kerf dependence on the cutting parameters in order to establish the most influential parameter. The results show that the independent parameter with the most significant influence was the laser power, with minimum Kerf obtained if the laser power and the assistant gas pressure were adjusted to average values. The interaction between laser power and auxiliary gas pressure at constant cutting speed was investigated to improve Kerf and reduce the laser processing cost. The study offers the right combination of process parameters that leads to a minimum value of the cutting width.


2020 ◽  
Vol 70 (3) ◽  
pp. 313-322
Author(s):  
Dinesh Singh ◽  
Rajkamal S. Shukla

Abrasive water jet machining (AWJM) has found its application in the manufacturing industries for machining hard materials with precision. A degree of high precision in machining of complex geometries makes AWJM valuable. The selection of optimum process parameters is important to the resulting quality of machined parts. In this study, an experimental investigation was conducted to evaluate the machinability of Inconel 600. A response surface methodology (RSM) is used to determine the influence of the AWJM process parameters on the considered performance characteristics, i.e., kerf top width (KTW) and taper angle. The analysis of variance is performed to obtain the contribution and influence of each process parameter on the considered responses. The value of R-Squared obtained for KTW and taper angle using regression model is 0.97 and 0.96 respectively. The optimum setting of the parameters for single and multiple response characteristics are obtained using the desirability analysis of RSM. The results obtained using desirability analysis of RSM is validated by conducting the confirmation experiments. The experimental confirmatory values obtained for the considered performance parameters KTW and taper angle as 27.138 and 0.125 respectively. The corresponding value of error obtained as 0.383 and 0.013 respectively. Further, an optimum set is obtained with KTW as 27.461 mm and taper angle as 0.582° for multiple response optimisation.


Sign in / Sign up

Export Citation Format

Share Document