Field Study of PID Parameter Tuning Investigation in Peristaltic Dosing Pump Control for Use in Automated Fertilizer Mixing System

Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 13-22
Author(s):  
Wai Xhuen Yong ◽  
Ahmad Najmuddin Ibrahim

Proportional–integral–derivative (PID) controller is one of the linear control methods of closed-loop irrigation control. Today, it is mostly used in the industry to regulate industrial process variables such as pressure, flow rate, temperature, heat, and others. In precision farming, the use of technologies such as sensors and PID controllers is popular nowadays. The technologies help the farmer fasten the fertilizer's mixing process before using it directly to the crop. However, not all farms afford to use high technology, and using low-cost mixing systems is one way to reduce their cost. Therefore, this research investigates the accuracy of fertilizer mixture using low-cost methods, compares the results, and proposes improvements to ensure a better fertilizer distribution for precision farming. Different parameter tuning will affect the mixing process of the fertilizer. A series of experiments will be conducted based on the PID control parameter, the concentration of the salt solution, and the initial amount of nutrients in the mixing tank. The salt solution will be used as an alternative for the fertilizer because it contains some similar composition ingredients that the EC sensor can detect. The experiment starts with a preliminary test to determine the temperature effect on reading where room temperature will be the best for the next experiment. The best PID parameter that is used is K_P= 130 and K_I= 60 to prevent the phenomenon of overshoot occur during the mixing process. Using the same PID parameter for the next experiment had also found out that the higher the concentration of the salt solution, the higher the chance occur the phenomenon of overshoot. The initial amount of nutrients inside the mixing tank does not affect much for the mixing process because the best parameter for the experiment we had found from the previous experiment is used. The results extracted from the experiment that shows the mixing process from a low-cost automated fertilizer mixing system.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yongli Zhang ◽  
Lijun Zhang ◽  
Zhiliang Dong

The optimization and tuning of parameters is very important for the performance of the PID controller. In this paper, a novel parameter tuning method based on the mind evolutionary algorithm (MEA) was presented. The MEA firstly transformed the problem solutions into the population individuals embodied by code and then divided the population into superior subpopulations and temporary subpopulations and used the similar taxis and dissimilation operations for searching the global optimal solution. In order to verify the control performance of the MEA, three classical functions and five typical industrial process control models were adopted for testing experiments. Experimental results indicated that the proposed approach was feasible and valid: the MEA with the superior design feature and parallel structure could memorize more evolutionary information, generate superior genes, and enhance the efficiency and effectiveness for searching global optimal parameters. In addition, the MEA-tuning method can be easily applied to real industrial practices and provides a novel and convenient solution for the optimization and tuning of the PID controller.


2000 ◽  
Vol 89 (5) ◽  
pp. 1766-1770 ◽  
Author(s):  
I-Ming Jou ◽  
Ya-Ting Tsai ◽  
Ching-Lin Tsai ◽  
Ming-Ho Wu ◽  
Han-Yu Chang ◽  
...  

Our new oropharyngeal intubation wedge made from a plastic 3-ml syringe has been used successfully for the expansion of the oropharyngeal cavity and visualization of vocal cords for endotracheal intubation in the rat. All the animals we used tolerated the intubation and ventilation procedures in a series of experiments. After the proper setting of the respirator, vital signs were maintained within normal range. The postmortem examination and measurements in the upper airway confirmed that the endotracheal tube was properly sited and also demonstrated the precise size of the device that should be used. The main advantages of this method include low cost, simplicity, and reliability. Furthermore, because no expensive, elaborate, difficult-to-operate, or hard-to-get special equipment is needed, this technique can be used in every laboratory.


2011 ◽  
Vol 5 (2) ◽  
Author(s):  
Karen May-Newman ◽  
Maria T. Matyska ◽  
Martin N. Lee

Intravenous catheterization is the most common invasive medical procedure today and is designed to introduce medication directly into the blood stream. Common practice is to administer medicine with one syringe, followed by a saline flush to clear the line of any residual medication. The risk of infection due to the introduction of bacteria in the catheter hub is increased with the number of times the hub is accessed. In addition, the two-step process adds millions of nursing hours per year and is prone to error. The goal of this effort was to design and test a dual-chamber syringe that could be reliably used for both dispensing medicine and the saline flush, and be produced at a low cost. The syringe has a novel dual-chamber design with a proximal chamber for medicine and a distal chamber that contains saline. The saline chamber has a fixed volume when the handle is locked into position, which allows the handle to control the variable volume of the medicine chamber. Between the two chambers is a plunger that surrounds the small channel (which is an extension of the distal chamber) that separates the saline from the medicine. When the distal chamber is unlocked, the handle controls the volume of the saline chamber. By this mechanism, the syringe is able inject the medicine followed by the saline flush with a single access to the catheter hub. The smooth operation of the device relies on a locking mechanism to control the rear plunger and volume of the distal saline chamber, and a bubble plug residing in the small channel between the chambers that prevents mixing of the medicine and saline fluids. The bubble plug is held in place by a balance of forces that depend on geometric variables and fluid properties. The chosen design prevents mixing of the two fluids during the operation of the device, which was experimentally validated with mass spectrometry. The dual-chamber syringe has successfully achieved the design goal of a single syringe for the two-step catheter procedure of dispensing medicine and a saline flush. This novel design will reduce the potential for catheter-based infection, medical errors, medical waste, and clinician time. Preliminary test results indicate that this innovation can significantly improve the safety and efficiency of catheter-based administration of medicine.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 851 ◽  
Author(s):  
Nasir Shehzad ◽  
Ahmed Zeeshan ◽  
Rahmat Ellahi ◽  
Saman Rashidi

In this paper, an analytical study of internal energy losses for the non-Darcy Poiseuille flow of silver-water nanofluid due to entropy generation in porous media is investigated. Spherical-shaped silver (Ag) nanosize particles with volume fraction 0.3%, 0.6%, and 0.9% are utilized. Four illustrative models are considered: (i) heat transfer irreversibility (HTI), (ii) fluid friction irreversibility (FFI), (iii) Joule dissipation irreversibility (JDI), and (iv) non-Darcy porous media irreversibility (NDI). The governing equations of continuity, momentum, energy, and entropy generation are simplified by taking long wavelength approximations on the channel walls. The results represent highly nonlinear coupled ordinary differential equations that are solved analytically with the help of the homotopy analysis method. It is shown that for minimum and maximum averaged entropy generation, 0.3% by vol and 0.9% by vol of nanoparticles, respectively, are observed. Also, a rise in entropy is evident due to an increase in pressure gradient. The current analysis provides an adequate theoretical estimate for low-cost purification of drinking water by silver nanoparticles in an industrial process.


2020 ◽  
Vol 17 (2) ◽  
pp. 325-338
Author(s):  
Raditya Novidianto ◽  
Rini Irfani

Indonesia is known as an agricultural country. This means that most of the population work in the agricultural sector related to food. However, food insecurity still occurs in Indonesia. With the COVID-19 pandemic, the Food and Agriculture Organization (FAO) stated that there was a threat of food scarcity which had an impact on food insecurity conditions. This would undermine the second goal of the SDGs, which is to end hunger and create sustainable agriculture. The purpose of this study was to determine the spatial pattern of food insecurity in each province in Indonesia using the bicluster method. The data used are data from Susenas and Sakernas by BPS in 2019. Several studies show that the bicluster method with the CC algorithm shows that each province group has a different characteristic pattern. In the bicluster approach, the researcher runs parameter tuning to select the best parameter based on the Mean Square Residual in Volume (MSR / V). The CC algorithm tries to get a bicluster with a low MSR value, therefore the best parameter is the one that produces the smallest MSR / V value, in this study the smallest MSR / V is 0,01737 with δ = 0,01. The application of the CC biclustering algorithm to the food insecurity structure in Indonesia results in 5 bicluster. Bicluster 1 consists of 15 provinces with 8 variables, Bicluster 2 consists of 10 provinces with 5 variables, Bicluster 3 consists of 3 provinces with 7 variables, Bicluster 4 consists of 4 provinces with 4 variables and Bicluster 5 consists of 2 provinces with 5 variables. Biculster 4 represents a cluster of food insecurity areas with the characteristics of the bicluster P0, P1, P2 and calorie consumption of less than 1400 KKAL.


2020 ◽  
Vol 20 (21) ◽  
pp. 13417-13424
Author(s):  
Jake P. Rowe ◽  
Andrew T. Lambe ◽  
William H. Brune

Abstract. Oxidation flow reactors (OFRs) complement environmental smog chambers as a portable, low-cost technique for exposing atmospheric compounds to oxidants such as ozone (O3), nitrate (NO3) radicals, and hydroxyl (OH) radicals. OH is most commonly generated in OFRs via photolysis of externally added O3 at λ=254 nm (OFR254) or combined photolysis of O2 and H2O at λ=185 nm plus photolysis of O3 at λ=254 nm (OFR185) using low-pressure mercury (Hg) lamps. Whereas OFR254 radical generation is influenced by [O3], [H2O], and photon flux at λ=254 nm (I254), OFR185 radical generation is influenced by [O2], [H2O], I185, and I254. Because the ratio of photon fluxes, I185:I254, is OFR-specific, OFR185 performance varies between different systems even when constant [H2O] and I254 are maintained. Thus, calibrations and models developed for one OFR185 system may not be applicable to another. To investigate these issues, we conducted a series of experiments in which I185:I254 emitted by Hg lamps installed in an OFR was systematically varied by fusing multiple segments of lamp quartz together that either transmitted or blocked λ=185 nm radiation. Integrated OH exposure (OHexp) values achieved for each lamp type were obtained using the tracer decay method as a function of UV intensity, humidity, residence time, and external OH reactivity (OHRext). Following previous related studies, a photochemical box model was used to develop a generalized OHexp estimation equation as a function of [H2O], [O3], and OHRext that is applicable for I185:I254≈0.001 to 0.1.


2018 ◽  
Vol 1148 ◽  
pp. 103-108 ◽  
Author(s):  
N.V.S. Shankar ◽  
A. Gopi Chand ◽  
K. Hanumantha Rao ◽  
K. Prem Sai

During machining any material, vibrations play a major role in deciding the life of the cutting tool as well as machine tool. The magnitude acceleration of vibrations is directly proportional to the cutting forces. In other words, if we are able to measure the acceleration experienced by the tool during machining, we can get a sense of force. There are many commercially available, pre-calibrated accelerometer sensors available off the shelf. In the current work, an attempt has been made to measure vibrations using ADXL335 accelerometer. This accelerometer is interfaced to computer using Arduino. The measured values are then used to optimize the machining process. Experiments are performed on Brass. During machining, it is better to have lower acceleration values. Thus, the first objective of the work is to minimize the vibrations. Surface roughness is another major factor which criterion “lower is the better” applies. In order to optimize the values, a series of experiments are conducted with three factors, namely, tool type (2 levels), Depth of cut (3 levels) and Feed are considered (3 levels). Mixed level optimization is performed using Taguchi analysis with L18 orthogonal array. Detailed discussion of the parameters shall be given in the article.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000001-000006
Author(s):  
F. Roozeboom ◽  
M. Smets ◽  
B. Kniknie ◽  
M. Hoppenbrouwers ◽  
G. Dingemans ◽  
...  

The current industrial process of choice for Deep Reactive Ion Etching (DRIE) of 3D features, e.g. Through-Silicon Vias (TSVs), Microelectromechanical Systems (MEMS), etc., is the Bosch process, which uses alternative SF6 etch cycles and C4F8-based sidewall passivation cycles in a time-sequenced mode. An alternative, potentially faster and more accurate process is to have wafers pass under spatially-divided reaction zones, which are individually separated by so-called N2-gas bearings ‘curtains’ of heights down to 10–20 μm. In addition, the feature sidewalls can be protected by replacing the C4F8-based sidewall passivation cycles by cycles forming chemisorbed and highly uniform passivation layers of Al2O3 or SiO2 deposited by Atomic Layer Deposition (ALD), also in a spatially-divided mode. ALD is performed either in thermal mode, or plasma-assisted mode in order to achieve near room-temperature processing. For metal filling of 3D-etched TSVs, or for deposition of 2D metal conductor lines one can use Laser-Induced Forward Transfer (LIFT) of metals. LIFT is a maskless, ‘solvent’-free deposition method, utilizing different types of pulsed lasers to deposit thin material (e.g. Cu, Au, Al, Cr) layers with μm-range resolution from a transparent carrier (ribbon) onto a close-by acceptor substrate. It is a dry, single-step, room temperature process in air, suitable for different types of interconnect fabrication, e.g. TSV filling and redistribution layers (RDL), without the use of wet chemistry.


2019 ◽  
Vol 11 (9) ◽  
pp. 2658 ◽  
Author(s):  
Pilaiwan Phupattanasilp ◽  
Sheau-Ru Tong

Benefitted by the Internet of Things (IoT), visualization capabilities facilitate the improvement of precision farming, especially in dynamic indoor planting. However, conventional IoT data visualization is usually carried out in offsite and textual environments, i.e., text and number, which do not promote a user’s sensorial perception and interaction. This paper introduces the use of augmented reality (AR) as a support to IoT data visualization, called AR-IoT. The AR-IoT system superimposes IoT data directly onto real-world objects and enhances object interaction. As a case study, this system is applied to crop monitoring. Multi-camera, a non-destructive and low-cost imaging platform of the IoT, is connected to the internet and integrated into the system to measure the three-dimensional (3D) coordinates of objects. The relationships among accuracy, object coordinates, augmented information (e.g., virtual objects), and object interaction are investigated. The proposed system shows a great potential to integrate IoT data with AR resolution, which will effectively contribute to updating precision agricultural techniques in an environmentally sustainable manner.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1171 ◽  
Author(s):  
Marcin Kubica ◽  
Dariusz Kania

The paper focuses on the methodology of designing a cyber physical systems (CPS) physical layer using programmable devices. The CPS physical layer can be implemented in programmable devices, which leads to a reduction in their costs and increases their versatility. One of the groups of programmable devices are complex programmable logic devices (CPLDs), which are great for energy-saving, low-cost implementations but requiring flexibility. It becomes necessary to develop mathematical CPS design methods focused on CPLD. This paper presents an original technology mapping method for digital circuits in programmable array logic (PAL)-based CPLDs. The idea is associated with the process of multilevel optimization of circuits dedicated to minimization of the area of a final solution. In the technology mapping process, the method of a multioutput function was used in the graph of outputs form. This method is well known from previous papers and proposes optimization of a basic form of the graph of outputs to enable better use of the resources of a programmable structure. The possibilities for the graph of outputs were expanded in the form of sequential circuits. This work presents a new form of a graph that describes the process of mapping and is known as the graph of excitations and outputs. This graph enables effective technology mapping of sequential circuits. The paper presents a series of experiments that prove the efficiency of the proposed methods for technology mapping. Experiments were conducted for various sizes of PAL-based logic blocks and commercially available CPLDs. The presented results indicate the possibility of more effective implementation of the CPS physical layer.


Sign in / Sign up

Export Citation Format

Share Document